Эпициклоида
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения. По свидетельству Лейбница, Оле Рёмер ранее 1676 года сделал важное в практическом отношении открытие, что эпициклоидические зубцы в зубчатом колесе производят наименьшее трение.
Уравнения
Если центр неподвижной окружности находится в начале координат, её радиус равен , радиус катящейся по ней окружности равен , то эпициклоида описывается параметрическими уравнениями относительно :
где — угол поворота точки, описывающей эпициклоиду, относительно центра подвижной окружности в момент начала движения (против часовой стрелки от оси x), — параметр, но фактически это угол наклона отрезка между центрами к оси .
Можно ввести величину , тогда уравнения предстанут в виде
Величина определяет форму эпициклоиды. При эпициклоида образует кардиоиду, а при — нефроиду. Если — несократимая дробь вида (), то — это количество каспов данной эпициклоиды, а — количество полных вращений катящейся окружности. Если иррациональное число, то кривая является незамкнутой и имеет бесконечное множество несовпадающих каспов.
- (нефроида)
Получение
- Пусть - искомая точка, - угол отклонения точки от точки касания двух окружностей, - угол отклонения между центрами данных окружностей.
- Так как окружность катится без скольжения, то
- По определению длины дуги окружности:
- Из данных двух утверждений выплывает, что
- Получаем соотношения для :
- Пусть центр неподвижной окружности , центр второй окружности . Очевидно, что
- Перепишем в координатах:
Следовательно позиция точки :