Синусоида
Синусо́ида — плоская кривая, задаваемая в прямоугольных координатах уравнением
График уравнения [косинусоиды] вида
также зачастую называется синусоидой. Данный график получается из синусоидального сдвигом на в отрицательном направлении оси абсцисс. Термин «косинусоида» практически отсутствует в официальной литературе, поскольку является излишним.
В приведённых формулах a, b, c, d — постоянные;
- a характеризует сдвиг графика по оси Oy. Чем больше a, тем выше поднимается график;
- b характеризует растяжение графика по оси Oy. Чем больше увеличивается b, тем сильнее возрастает амплитуда колебаний;
- с характеризует растяжение графика по оси Ox. При увеличении c частота колебаний повышается ;
- d характеризует сдвиг графика по оси Ox. При увеличении d график двигается в отрицательном направлении оси абсцисс.
Синусоидальное изменение какой-либо величины называется гармоническим колебанием. Примерами могут являться любые колебательные процессы начиная от качания маятника и кончая звуковыми волнами (гармонические колебания воздуха) — колебания напряжения в электрической сети переменного тока, изменение тока и напряжения в колебательном контуре и др. Также синусоида — проекция на плоскость винтовой линии, например, скрученного провода; рулон бумаги разрезанный наискось (косо усечённый цилиндр) и развернутый — край бумаги оказывается разрезанным по синусоиде.
Синусоида была впервые рассмотрена Робервалем в 1634 году. При вычислении площади под графиком циклоиды он рассмотрел вспомогательную кривую, образуемую проекциями точки окружности, катящейся по прямой, на вертикальный диаметр этой окружности. Роберваль назвал эту кривую «спутницей циклоиды»; позднее Оноре Фабри стал называть её «линией синусов».[1]
Синусоида может пересекать прямую в бесконечном числе точек (например, график функции пересекает прямую в точках с координатами ). Из теоремы Безу следует, что любая кривая с таким свойством является трансцендентной.
Примечания
- Юшкевич А. П. История математики с древнейших времен до начала XIX столетия. Том 2. — Рипол Классик, 2013. — С. 187—189. — ISBN 545849699X.
Ссылки
- «Что такое синус и синусоида» — перевод статьи Intuitive Understanding of Sine Waves | BetterExplained (англ.)