Постоянная Апери
Постоя́нная Апери́ (англ. Apéry's constant, фр. Constante d'Apéry) — вещественное число, обозначаемое (иногда ), которое равно сумме обратных к кубам целых положительных чисел и, следовательно, является частным значением дзета-функции Римана:
- .
Иррациональные числа ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — и π |
Численное значение постоянной выражается бесконечной непериодической десятичной дробью[1][2]:
- 1,202 056 903 159 594 285 399 738 161 511 449 990 764 986 292 340 498 881 792 271 555 3…
Названа в честь Роже Апери, доказавшего в 1978 году, что является иррациональным числом (теорема Апери[3][4]). Изначальное доказательство носило сложный технический характер, позднее найден простой вариант доказательства с использованием многочленов Лежандра. Неизвестно, является ли постоянная Апери трансцендентным числом.
Эта постоянная давно привлекала интерес математиков — ещё в 1735 году Леонард Эйлер[5][6] вычислил её с точностью до 16 значащих цифр (1,202056903159594).
Приложения в математике и физике

В математике постоянная Апери встречается во многих приложениях. В частности, величина, обратная , даёт вероятность того, что любые три случайным образом выбранных положительных целых числа будут взаимно просты — в том смысле, что при вероятность того, что три положительных целых числа, меньших, чем (и выбранных случайным образом) будут взаимно простыми, стремится к .
Постоянная Апери естественным образом возникает в ряде проблем физики, включая поправки второго (и выше) порядков к аномальному магнитному моменту электрона в квантовой электродинамике. Например, результат для двухпетлевой диаграммы Фейнмана, изображённой на рисунке, даёт (здесь предполагается 4-мерное интегрирование по импульсам внутренних петель, содержащих только безмассовые виртуальные частицы, а также соответствующая нормировка, включая степень импульса внешней частицы ). Другой пример — двумерная модель Дебая.
Связь с другими функциями
Постоянная Апери связана с частным значением полигамма-функции второго порядка:
и появляется в разложении гамма-функции в ряд Тейлора:
- ,
где в виде факторизуются вклады, содержащие постоянную Эйлера — Маскерони .
Постоянная Апери также связана со значениями трилогарифма (частный случай полилогарифма ):
- ,
- .
Представления в виде рядов
Некоторые другие ряды, члены которых обратны к кубам натуральных чисел, также выражаются через постоянную Апери:
- ,
- .
Другие известные результаты — сумма ряда, содержащего гармонические числа :
- ,
а также двукратная сумма:
- .
Для доказательства иррациональности Роже Апери[3] пользовался представлением:
- ,
где — биномиальный коэффициент.
В 1773 году Леонард Эйлер[7] привёл представление в виде ряда[8] (которое впоследствии было несколько раз заново открыто в других работах):
- ,
в котором значения дзета-функции Римана чётных аргументов могут быть представлены как , где — числа Бернулли.
Рамануджан дал несколько представлений в виде рядов, которые замечательны тем, что они обеспечивают несколько новых значащих цифр на каждой итерации. Они включают в себя[9]:
Саймон Плафф получил ряды другого типа[10]
а также аналогичные представления для других постоянных .
Были также получены другие представления в виде рядов, включая:
Некоторые из этих представлений были использованы для вычисления постоянной Апери со многими миллионами значащих цифр.
В 1998 году получено представление в виде ряда[11], которое даёт возможность вычислить произвольный бит постоянной Апери.
Представления в виде интегралов
Существует также большое количество различных интегральных представлений для постоянной Апери, начиная от тривиальных формул типа
или
следующих из простейших интегральных определений дзета-функции Римана[12], до достаточно сложных, таких, как
- (Иоган Йенсен[13]),
- (Фритс Бёкерс[14]),
- (Ярослав Благушин[15]).
Цепные дроби
Цепная дробь для константы Апери (последовательность A013631 в OEIS) выглядит следующим образом:
Первую обобщённую цепную дробь для константы Апери, имеющую закономерность, открыли независимо Стилтьес и Рамануджан:
Она может быть преобразована к виду:
Апери смог ускорить сходимость цепной дроби для константы:
Вычисление десятичных цифр
Число известных значащих цифр постоянной Апери значительно выросло за последние десятилетия благодаря как увеличению компьютерных мощностей, так и улучшению алгоритмов[18].
Дата | Количество значащих цифр | Авторы вычисления |
---|---|---|
1735 | 16 | Леонард Эйлер[5][6] |
1887 | 32 | Томас Иоаннес Стилтьес |
1996 | 520 000 | Greg J. Fee & Simon Plouffe |
1997 | 1 000 000 | Bruno Haible & Thomas Papanikolaou |
1997, май | 10 536 006 | Patrick Demichel |
1998, февраль | 14 000 074 | Sebastian Wedeniwski |
1998, март | 32 000 213 | Sebastian Wedeniwski |
1998, июль | 64 000 091 | Sebastian Wedeniwski |
1998, декабрь | 128 000 026 | Sebastian Wedeniwski[19] |
2001, сентябрь | 200 001 000 | Shigeru Kondo & Xavier Gourdon |
2002, февраль | 600 001 000 | Shigeru Kondo & Xavier Gourdon |
2003, февраль | 1 000 000 000 | Patrick Demichel & Xavier Gourdon |
2006, апрель | 10 000 000 000 | Shigeru Kondo & Steve Pagliarulo[20] |
2009, январь | 15 510 000 000 | Alexander J. Yee & Raymond Chan[21] |
2009, март | 31 026 000 000 | Alexander J. Yee & Raymond Chan[21] |
2010, сентябрь | 100 000 001 000 | Alexander J. Yee[22] |
2013, сентябрь | 200 000 001 000 | Robert J. Setti[22] |
2015, август | 250 000 000 000 | Ron Watkins[22] |
2015, декабрь | 400 000 000 000 | Dipanjan Nag[22] |
2017, август | 500 000 000 000 | Ron Watkins[22] |
2019, май | 1 000 000 000 000 | Ian Cutress[22] |
2020, июль | 1 200 000 000 000 | Seungmin Kim[23] |
Другие значения дзета-функции в нечётных точках
Существует много исследований, посвящённых другим значениям дзета-функции Римана в нечётных точках при . В частности, в работах Вадима Зудилина и Тангая Ривоаля показано, что иррациональными является бесконечное множество чисел [24], а также что по крайней мере одно из чисел , , , или является иррациональным[25].
Примечания
- Simon Plouffe, Zeta(3) or Apery constant to 2000 places, <http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap97.html>. Проверено 8 февраля 2011.
- последовательность A002117 в OEIS
- Roger Apéry (1979), Irrationalité de ζ(2) et ζ(3), Astérisque Т. 61: 11–13
- A. van der Poorten (1979), A proof that Euler missed... Apéry’s proof of the irrationality of ζ(3). An informal report, The Mathematical Intelligencer Т. 1: 195–203, doi:10.1007/BF03028234, <http://www.maths.mq.edu.au/~alf/45.pdf>. Проверено 8 февраля 2011.
- Leonhard Euler (1741), Inventio summae cuiusque seriei ex dato termino generali (13 октября 1735), Commentarii academiae scientiarum Petropolitanae Т. 8: 173–204, <http://math.dartmouth.edu/~euler/docs/originals/E047.pdf>. Проверено 9 февраля 2011.
- Leonhard Euler (translation by Jordan Bell, 2008), Finding the sum of any series from a given general term, arXiv:0806.4096, <http://arxiv.org/PS_cache/arxiv/pdf/0806/0806.4096v1.pdf>. Проверено 9 февраля 2011.
- Leonhard Euler (1773), Exercitationes analyticae, Novi Commentarii academiae scientiarum Petropolitanae Т. 17: 173–204, <http://math.dartmouth.edu/~euler/docs/originals/E432.pdf>. Проверено 8 февраля 2011.
- H. M. Srivastava (2000), Some Families of Rapidly Convergent Series Representations for the Zeta Functions, Taiwanese Journal of Mathematics Т. 4 (4): 569–598, ISSN 1027-5487, <http://www.math.nthu.edu.tw/~tjm/abstract/0012/tjm0012_3.pdf>. Проверено 8 февраля 2011. Архивная копия от 19 июля 2011 на Wayback Machine
- Bruce C. Berndt (1989), Ramanujan's notebooks, Part II, Springer-Verlag, ISBN 978-0-387-96794-3, <https://www.springer.com/mathematics/numbers/book/978-0-387-96794-3>. Проверено 8 февраля 2011.
- Simon Plouffe (1998), Identities inspired from Ramanujan Notebooks II, <http://www.lacim.uqam.ca/~plouffe/identities.html>. Проверено 8 февраля 2011. Архивная копия от 30 января 2009 на Wayback Machine
- D. J. Broadhurst (1998), Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5), arXiv (math.CA/9803067), <http://arxiv.org/abs/math.CA/9803067>. Проверено 8 февраля 2011.
- Г. М. Фихтенгольц. Курс дифференциального и интегрального исчисления (7-ое изд.), с. 769. Наука, Москва, 1969
- Johan Ludwig William Valdemar Jensen. Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver. L’Intermédiaire des mathématiciens, tome II, pp. 346—347, 1895.
- F. Beukers A Note on the Irrationality of ζ(2) and ζ(3). Bull. London Math. Soc. 11, pp. 268—272, 1979.
- Iaroslav V. Blagouchine Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results. The Ramanujan Journal, vol. 35, no. 1, pp. 21-110, 2014. PDF
- Steven R. Finch Mathematical Constants 1.6.6
- van der Poorten, Alfred (1979), A proof that Euler missed ... Apéry’s proof of the irrationality of ζ(3), The Mathematical Intelligencer Т. 1 (4): 195–203, doi:10.1007/BF03028234, <https://web.archive.org/web/20110706114957/http://www.maths.mq.edu.au/~alf/45.pdf>
- X. Gourdon & P. Sebah, Constants and Records of Computation, numbers.computation.free.fr, <http://numbers.computation.free.fr/Constants/constants.html>. Проверено 8 февраля 2011.
- Sebastian Wedeniwski (2001), The Value of Zeta(3) to 1,000,000 places, Project Gutenberg
- Xavier Gourdon & Pascal Sebah (2003), The Apéry's constant: ζ(3), <http://numbers.computation.free.fr/Constants/Zeta3/zeta3.html>. Проверено 8 февраля 2011.
- Alexander J. Yee & Raymond Chan (2009), Large Computations, <http://www.numberworld.org/nagisa_runs/computations.html>. Проверено 8 февраля 2011.
- Alexander J. Yee (2015), Zeta(3) — Apery's Constant, <http://www.numberworld.org/digits/Zeta%283%29/>. Проверено 24 ноября 2018.
- Apéry’s Constant | Polymath Collector
- T. Rivoal (2000), La fonction zeta de Riemann prend une infnité de valuers irrationnelles aux entiers impairs, Comptes Rendus Acad. Sci. Paris Sér. I Math. Т. 331: 267–270
- В. В. Зудилин. Одно из чисел ζ(5), ζ(7), ζ(9), ζ(11) иррационально // УМН. — 2001. — Т. 56, вып. 4(340). — С. 149–150.
Ссылки
- Ю. И. Манин, А. А. Панчишкин. I.2.4. Диофантовы приближения и иррациональность ζ(3) // Введение в теорию чисел. — ВИНИТИ, 1990. — Т. 49. — С. 83—89. — 341 с. — (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».).
- V. Ramaswami (1934), Notes on Riemann's ζ-function, J. London Math. Soc. Т. 9: 165–169, doi:10.1112/jlms/s1-9.3.165, <http://jlms.oxfordjournals.org/content/s1-9/3/165.full.pdf>
- Weisstein, Eric W. Apéry's constant (англ.) на сайте Wolfram MathWorld.