Модель Дебая

В термодинамике и физике твёрдого тела модель Дебая — метод, развитый Дебаем в 1912 г. для оценки фононного вклада в теплоёмкость твёрдых тел. Модель Дебая рассматривает колебания кристаллической решётки как газ квазичастиц — фононов. Эта модель правильно предсказывает теплоёмкость при низких температурах, которая, согласно закону Дебая, пропорциональна . В пределе высоких температур молярная теплоёмкость, согласно закону Дюлонга — Пти, стремится к , где универсальная газовая постоянная.

Дебай при построении своей теории принял следующие предположения:[1]

  1. Твёрдое тело представляет собой непрерывную среду.
  2. Эта среда упруго изотропна.
  3. В среде отсутствует дисперсия.
  4. Упругие свойства среды не зависят от температуры.

При тепловом равновесии энергия набора осцилляторов с различными частотами равна сумме их энергий:

где — число мод нормальных колебаний на единицу длины интервала частот, — количество осцилляторов в твёрдом теле, колеблющихся с частотой .

Функция плотности в трёхмерном случае имеет вид:

где — объём твёрдого тела, — скорость звука в нём.

Значение квантовых чисел вычисляются по формуле Планка:

Тогда энергия запишется в виде:

где температура Дебая, — число атомов в твёрдом теле, постоянная Больцмана.

Дифференцируя внутреннюю энергию по температуре, получим:

Молярная теплоёмкость твёрдого тела в теории Дебая

В модели Дебая учтено, что теплоёмкость твёрдого тела — это параметр равновесного состояния термодинамической системы. Поэтому волны, возбуждаемые в твёрдом теле элементарными осцилляторами, не могут переносить энергию. То есть они являются стоячими волнами. Если твёрдое тело выбрать в виде прямоугольного параллелепипеда с рёбрами , , , то условия существования стоячих волн можно записать в виде:

где — целые числа.

Перейдём к пространству, построенному на волновых векторах. Поскольку , то

Таким образом, в твёрдом теле могут существовать осцилляторы, с частотами, изменяющимися дискретно. Одному осциллятору в -пространстве соответствует ячейка с объёмом

где

В -пространстве осцилляторам с частотами в интервале соответствует один октант сферического слоя с объёмом

В этом объёме количество осцилляторов равно

Учтём, что каждый осциллятор генерирует 3 волны: 2 поперечные и одну продольную. При этом .

Найдём внутреннюю энергию одного моля твёрдого тела. Для этого запишем взаимосвязь между волновым числом, скоростью распространения волн и частотой:

Колебания в твёрдом теле ограничены максимальным значением частоты . Определим граничную частоту из условия:

Отсюда внутренняя энергия одного моля:

где  — средняя энергия квантового осциллятора (см. модель теплоёмкости Эйнштейна),

 — постоянная Больцмана,

 — число Авогадро.

В последнем выражении сделаем следующую замену переменных:

; ; ;

 — температура Дебая.

Теперь для получим

Наконец, для молярной теплоёмкости получаем

Легко проверить, что при условии теплоёмкость , а при условии теплоёмкость

Интеграл может быть взят методами теории функций комплексной переменной или с использованием дзета-функции Римана. Таким образом, теория Дебая соответствует результатам экспериментов.

Примечания

  1. Блатт Ф. Физика электронной проводимости в твёрдых телах. - М., Мир, 1971. - c. 64

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.