Простой узел (теория узлов)

В теории узлов простой узел или простое зацепление — узел, который, в определённом смысле, неразложим. Точнее, это нетривиальный узел, который нельзя представить в виде конкатенации двух нетривиальных узлов. Об узлах, не являющихся простыми, говорят как о составных узлах или составных зацеплениях. Определить, является ли данный узел простым или нет, может оказаться сложной задачей.

Примеры

Хорошим примером семейства простых узлов служат торические узлы. Эти узлы образуются накручиванием окружности на тор p раз в одном направлении и q раз в другом, где p и q являются взаимно простыми целыми числами.

Простейший простой узел — это трилистник с тремя пересечениями. Трилистник является, фактически, (2, 3)-торическим узлом. Узел «восьмёрка» с четырьмя пересечениями является простейшим неторическим узлом. Для любого положительного целого числа n имеется конечное число простых узлов с n пересечениями. Первые несколько значений числа простых узлов (последовательность A002863 в OEIS) даны в следующей таблице.

n 12345678910111213141516
Число простых узлов
с n пересечениями
001123721491655522176998846 972253 2931 388 705
Составные узлы 00000214............
Всего 001125825............

Заметим, что антиподы считались в этой таблице и ниже лежащем рисунке только один раз (т. е. узел и его зеркальное отражение считаются эквивалентными).

Изображения всех простых узлов с семью и менее пересечениями без учёта зеркальных отражений. (Тривиальный узел простым не считается)

Теорема Шуберта

Теорема, принадлежащая Хорсту Шуберту, утверждает, что любой узел можно единственным образом представить в виде конкатенации простых узлов[1].

См. также

  • Список простых узлов

Примечания

  1. Schubert, 1949, с. 57—104.

Литература

  • H. Schubert. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten // S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. — 1949.

Ссылки

  • Weisstein, Eric W. Prime Knot (англ.) на сайте Wolfram MathWorld.
  • [Prime Links with a Non-Prime Component ]Knot Atlas
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.