Ксенон
Ксено́н (химический символ — Xe, от лат. Xenon) — химический элемент 18-й группы (по устаревшей классификации — восьмой группы главной подгруппы, VIIIA), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54.
Ксенон | ||||
---|---|---|---|---|
← Иод | Цезий → | ||||
| ||||
Внешний вид простого вещества | ||||
Cжиженный ксенон в акриловом кубе |
||||
Свойства атома | ||||
Название, символ, номер | Ксено́н / Xenon (Xe), 54 | |||
Группа, период, блок |
18 (устар. 8), 5, p-элемент |
|||
Атомная масса (молярная масса) |
131,293(6)[1] а. е. м. (г/моль) | |||
Электронная конфигурация | [Kr] 4d105s25p6 | |||
Радиус атома | ? (108)[2] пм | |||
Химические свойства | ||||
Ковалентный радиус | 130[2] пм | |||
Радиус иона | 190[2] пм | |||
Электроотрицательность | 2,6 (шкала Полинга) | |||
Электродный потенциал | 0 | |||
Степени окисления | 0, +1, +2, +4, +6, +8 | |||
Энергия ионизации (первый электрон) |
1170,35 (12,1298)[3] кДж/моль (эВ) | |||
Термодинамические свойства простого вещества | ||||
Плотность (при н. у.) |
3,52 (при −107,05 °C); |
|||
Температура плавления | 161,3 К (-111,85 °C) | |||
Температура кипения | 166,1 К (-107,05 °C) | |||
Уд. теплота плавления | 2,27 кДж/моль | |||
Уд. теплота испарения | 12,65 кДж/моль | |||
Молярная теплоёмкость | 20,79[4] Дж/(K·моль) | |||
Молярный объём | 22,4⋅103 см³/моль | |||
Кристаллическая решётка простого вещества | ||||
Структура решётки |
Кубическая гранецентрированая кубическая атомна |
|||
Параметры решётки | 6,200[4] | |||
Прочие характеристики | ||||
Теплопроводность | (300 K) 0,0057 Вт/(м·К) | |||
Номер CAS | 7440-63-3 | |||
Эмиссионный спектр | ||||
54 | Ксенон |
4d105s25p6 |
Простое вещество ксенон — это тяжёлый благородный одноатомный газ без цвета, вкуса и запаха.
История
Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону[5][6]. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.
Происхождение названия
Рамзай предложил в качестве названия элемента древнегреческое слово ξένον, которое является формой среднего рода единственного числа от прилагательного ξένος «чужой, странный». Название связано с тем, что ксенон был обнаружен как примесь к криптону, и с тем, что его доля в атмосферном воздухе чрезвычайно мала.
Распространённость
Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086[4]—0,087[7] см3 ксенона.
В Солнечной системе
Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли[8], хотя содержание изотопа 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты[9][10]. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца[11].
Земная кора
Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн[7]. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133Xe и 135Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.
Определение
Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа[4].
Свойства
Физические свойства
Полная электронная конфигурация атома ксенона: 1s22s22p63s23p63d104s24p64d105s25p6
При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К)[4].
Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К)[4], он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм, Z = 4[4].
Критическая температура ксенона 289,74 К (+16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3[4].
Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3[4].
В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.
Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при +25 °C)[4].
При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2/с, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К)[4].
Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3[4]. Энергия ионизации 12,1298 эВ[3].
Химические свойства
Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие[12].
Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.
В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).
- Реакции со фтором[13]:
- при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением;
- при 400 ºC под давлением; примеси XeF2, XeF6;
- при 300 ºC под давлением; примесь XeF4.
Изотопы
Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.
9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Ещё два изотопа (124Xe, T1/2 = 1,8·1022 лет и 136Xe, T1/2 = 2,165·1021 лет) имеют огромные периоды полураспада, на много порядков больше возраста Вселенной (~1,4·1010 лет).
Остальные изотопы искусственные, самые долгоживущие из них 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов.
Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток)[14].
Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ[15], его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).
Получение
Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.
В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. Криптон#Получение.
Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении[3].
Применение
Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:
- Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
- Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
- Фториды ксенона используют для пассивации металлов.
- Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов. В 2020 году Роскосмос заявил о начале строительства космического аппарата «Нуклон» с ядерной силовой установкой. Ксенон будет использоваться в качестве рабочего тела реактивного двигателя.
- В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 году. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза[16].
- В наши дни[уточнить] ксенон проходит апробацию в лечении зависимых состояний[17].
- Жидкий ксенон иногда используется как рабочая среда лазеров[18].
- Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
- В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
- Ксенон используется для наполнения ячейки Голея в детекторах терагерцевого излучения[19].
- Для транспортировки фтора, проявляющего сильные окисляющие свойства.
Ксенон как допинг
- В 2014 году Всемирное антидопинговое агентство приравняло ингаляции ксенона к применению допинга[20][21].
Биологическая роль
- Газ ксенон нетоксичен, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
- Заполнение ксеноном лёгких и выдыхание при разговоре приводит к значительному понижению тембра голоса (эффект, обратный эффекту гелия).
- Фториды ксенона ядовиты, ПДК в воздухе — 0,05 мг/м³.
Галерея
- Ксеноновая газоразрядная трубка светится голубым светом.
- Акриловый куб, специально подготовленный для сборщиков элементов, содержащих сжиженный ксенон.
- Слой твёрдого ксенона, плавающий поверх жидкого ксенона внутри высоковольтного устройства.
- Жидкие (нехарактерные) и кристаллические твёрдые наночастицы Xe, полученные имплантацией ионов Xe+ в алюминий при комнатной температуре.
- Ксеноновая лампа-вспышка (анимированная версия)
- Кристаллы XeF4, 1962 г.
- Ксеноновая лампа с короткой дугой.
- Космический шаттл Атлантис залит ксеноновыми огнями
- Прототип ксенонового ионного двигателя проходит испытания в Лаборатории реактивного движения НАСА
Примечания
- Meija J. et al. Atomic weights of the elements 2013 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2016. — Vol. 88, no. 3. — P. 265—291. — doi:10.1515/pac-2015-0305.
- Size of xenon in several environments (англ.). www.webelements.com. Дата обращения: 6 августа 2009.
- CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — 2828 p. — ISBN 1420090844.
- Легасов В. А., Соколов В. Б. Ксенон // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — С. 548—549. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
- Ramsay W., Travers M. W. On the extraction from air of the companions of argon, and neon (англ.) // Report of the Meeting of the British Association for the Advancement of Science. — 1898. — P. 828.
- Gagnon, Steve It's Elemental – Xenon . Thomas Jefferson National Accelerator Facility. Дата обращения: 16 июня 2007.
- Hwang S.-C., Lein R. D., Morgan D. A. Noble Gases // Kirk-Othmer Encyclopedia of Chemical Technology. — 5th Ed.. — Wiley, 2005. — ISBN 0-471-48511-X. — doi:10.1002/0471238961.0701190508230114.a01.
- Williams, David R. Mars Fact Sheet . NASA (1 сентября 2004). Дата обращения: 10 октября 2007. Архивировано 16 июля 2011 года.
- Schilling, James Why is the Martian atmosphere so thin and mainly carbon dioxide? (недоступная ссылка). Mars Global Circulation Model Group. Дата обращения: 10 октября 2007. Архивировано 22 августа 2011 года.
- Zahnle K. J. Xenological constraints on the impact erosion of the early Martian atmosphere (англ.) // Journal of Geophysical Research. — 1993. — Vol. 98, no. E6. — P. 10899—10913. — doi:10.1029/92JE02941.
- Mahaffy P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer (англ.) // Journal of Geophysical Research. — 2000. — Vol. 105, no. E6. — P. 15061—15072. — doi:10.1029/1999JE001224. — .
- Андрей Вакулка. Ксенон и кислород: сложные отношения // Наука и жизнь. — 2018. — № 5. — С. 43—47.
- Лидин Р. А., Молочко В. А., Андреева Л. Л. Неорганическая химия в реакциях. Справочник. — 2-е изд.. — Москва: Дрофа, 2007. — С. 609. — 640 с.
- Архивированная копия (недоступная ссылка). Дата обращения: 11 сентября 2011. Архивировано 20 июля 2011 года.
- Медицинский комплекс по производству радиоизотопов на базе растворного реактора
- О РАЗРЕШЕНИИ МЕДИЦИНСКОГО ПРИМЕНЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ. Приказ. Министерство здравоохранения РФ. 08.10.99 363 :: Инновации и предпринимательство: гранты, технологии, патенты (недоступная ссылка). Дата обращения: 10 августа 2010. Архивировано 10 ноября 2012 года.
- Ксенон — новое слово в наркологии (недоступная ссылка). Дата обращения: 16 февраля 2011. Архивировано 7 июля 2011 года.
- Эксимерный лазер на жидком ксеноне
- Приемники излучения терагерцового диапазона (обзор).
- Gas used by Russian Sochi 2014 medallists banned
- WADA признала ксенон допингом (недоступная ссылка). Дата обращения: 10 ноября 2015. Архивировано 17 ноября 2015 года.