Гиперполяризация (физика)

Гиперполяризация — поляризация ядерных спинов веществ далеко за пределами теплового равновесия. Гиперполяризованные благородные газы обычно используются при магнитно-резонансной томографии лёгких. Уровень поляризации 129Xe и 3He может в 104—105 раз превышать уровень теплового равновесия.

Методы гиперполяризации:

  • спин-обменная оптическая накачка;
  • оптическая накачка с обменом метастабильностью;
  • динамическая поляризация ядер (ДПЯ);
  • индуцированная параводородом поляризация ядер (ИППЯ);
  • усиление сигнала в результате обратимого обмена.

Спин-обменная оптическая накачка[1]

Луч лазера с круговой поляризацией вызывает электронные переходы в атомах щелочных металлов (например, рубидий) находящихся в газообразном состоянии, тем самым создавая электронную поляризацию. При столкновении щелочных металлов с благородными газами (например, ксенон) в процессе спинового обмена поляризация с электронов переносится на ядра благородных газов.

Динамическая поляризация ядер

Динамическая поляризация ядер основана на переносе электронной поляризации на ядра.[2] Перенос поляризации может осуществляться спонтанно или при спиновом смешивании.

В методе динамической поляризации ядер в жидкой фазе (dissolution-DNP, d-DNP) процесс гиперполяризации происходит в твердом состоянии при низких температурах, после чего образец растворяется в разогретом растворителе и впрыскивается ЯМР ампулу, расположенную в спектрометре ЯМР.[3]

Аналогично ДПЯ в жидкой фазе, существует метод ДПЯ для работы в газовой фазе, где также процесс гиперполяризации происходит в твердом состоянии, после чего вещество в процессе сублимации нагревается и переходит в газообразной состояние, подходящее для детекции в спектрометре ЯМР.[4]

Индуцированная параводородом поляризация ядер

В данном методе используется спиновый изомер водорода — параводород, у которого ядерные спины противоположно направлены. При присоединении параводорода к интересующей молекуле, магнитная эквивалентность ядерных спинов параводорода нарушается, но сохраняется корреляция их спинов, что позволяет наблюдать усиление сигнала в спектрах ЯМР.

Эффекты ИППЯ впервые наблюдались в ходе реакции гидрирования параводородом в сильном поле. Такой эффект был назван PASADENA (Parahydrogen And Synthesis Allows Dramatically Enhanced Nuclear Alignment).[5] В этом случае заселяются уровни имеющие синглетную симметрию, а в спектрах ЯМР наблюдаются два антифазных сигнала.

Другой эффект — ALTADENA (Adiabatic Longitudinal Transport After Dissociation Engenders Nuclear Alignment) — обнаруживается при гидрировании субстрата в слабом магнитном поле.[6] В ALTADENA экспериментах заселяется только один из уровней, соответствующий синглетной симметрии.

Примечания

  1. Thad G. Walker, William Happer. Spin-exchange optical pumping of noble-gas nuclei (англ.) // Reviews of Modern Physics. — 1997-04-01. Vol. 69, iss. 2. P. 629–642. ISSN 1539-0756 0034-6861, 1539-0756. doi:10.1103/RevModPhys.69.629.
  2. A Abragam, M Goldman. Principles of dynamic nuclear polarisation // Reports on Progress in Physics. — 1978-03-01. Т. 41, вып. 3. С. 395–467. ISSN 1361-6633 0034-4885, 1361-6633. doi:10.1088/0034-4885/41/3/002.
  3. Guannan Zhang, Christian Hilty. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry (англ.) // Magnetic Resonance in Chemistry. — 2018-7. Vol. 56, iss. 7. P. 566–582. doi:10.1002/mrc.4735.
  4. A. Comment, S. Jannin, J.-N. Hyacinthe, P. Miéville, R. Sarkar. Hyperpolarizing Gases via Dynamic Nuclear Polarization and Sublimation (англ.) // Physical Review Letters. — 2010-07-01. Vol. 105, iss. 1. ISSN 1079-7114 0031-9007, 1079-7114. doi:10.1103/PhysRevLett.105.018104.
  5. C. Russell Bowers, D. P. Weitekamp. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment (англ.) // Journal of the American Chemical Society. — 1987-9. Vol. 109, iss. 18. P. 5541–5542. ISSN 0002-7863. doi:10.1021/ja00252a049.
  6. Michael G. Pravica, Daniel P. Weitekamp. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field (англ.) // Chemical Physics Letters. — 1988-4. Vol. 145, iss. 4. P. 255–258. doi:10.1016/0009-2614(88)80002-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.