Эйнштейний
Эйнште́йний — трансурановый химический элемент с атомным номером 99, радиоактивный серебристый металл. Является элементом с самым большим атомным номером, который был получен в весовых количествах[1]. Ежегодно производится несколько миллиграммов эйнштейния[2].
Эйнштейний | ||||
---|---|---|---|---|
← Калифорний | Фермий → | ||||
| ||||
Внешний вид простого вещества | ||||
Радиоактивный серебристый металл | ||||
Свойства атома | ||||
Название, символ, номер | Эйнштейний (Es), 99 | |||
Атомная масса (молярная масса) |
252,083 а. е. м. (г/моль) | |||
Электронная конфигурация | [Rn] 5f11 7s2 | |||
Радиус атома | 292 пм | |||
Химические свойства | ||||
Электроотрицательность | 1,3 (шкала Полинга) | |||
Электродный потенциал |
Es←Es3+ −2,0 В Es←Es2+ −2,2 В |
|||
Степени окисления | 2, 3, 4 | |||
Энергия ионизации (первый электрон) |
619 кДж/моль (эВ) | |||
Термодинамические свойства простого вещества | ||||
Плотность (при н. у.) | 13,5 г/см³ | |||
Температура плавления | 860 °C | |||
Номер CAS | 7429-92-7 |
99 | Эйнштейний |
5f117s2 |
История
Эйнштейний был открыт в декабре 1952 года в радиоактивных осадках, оставшихся после испытания Иви Майк[3]. Элемент назван в честь Альберта Эйнштейна.
В 1961 году был получен первый макроскопичекий образец эйнштейния весом 0,01 мкг[4].
Получение
Эйнштейний-247 получается с помощью бомбардировки америция-241 ионами углерода или урана-238 ионами азота[5].
Эйнштейний-248 можно получить путём бомбардировки калифорния-249 ионами дейтерия[6].
Изотопы с атомными номерами от 249 до 252 синтезируются с помощью облучения берклия-249 альфа-частицами[7].
Эйнштейний-253 получается бомбардировкой мишени из калифорния-252 тепловыми нейтронами[8].
Физические и химические свойства
Эйнштейний является радиоактивным металлом. Принадлежит к семейству актиноидов.
В соединениях эйнштейний проявляет степени окисления +2 и +3. Примером может служить его иодид с химической формулой EsI3 (твёрдое вещество янтарного цвета[9]). В обычном водном растворе эйнштейний существует в наиболее устойчивой форме в виде ионов Es3+ (даёт зелёную окраску). Галогениды со степенью окисления +2 можно получить восстановлением соответствующего галогенида со степенью окисления +3 водородом[10]. Оксигалогениды эйнштейния могут быть получены нагреванием трёхвалентного галогенида со смесью паров воды и соответствующего галогеноводорода[11].
Эйнштейний — металл с кубической гранецентрированной решёткой, параметр решётки a = 0,575 нм, температура плавления — 860 °C. Характеризуется относительно высокой летучестью, может быть получен путём восстановления EsF3 литием. Синтезированы и изучены многие твёрдые соединения эйнштейния, такие как Es2O3, EsCl3, EsOCl, EsBr2, EsBr3, EsI2 и EsI3.
Изотопы
Всего известно 19 изотопов и 3 изомера с массовыми числами от 243 до 256. Самый долгоживущий из изотопов 252Es имеет период полураспада 471,7 сут. Однако более распространён изотоп 253Es с периодом полураспада около 20 дней, так как его легче получить. Но он быстро альфа-распадается до берклия-249, а этот изотоп превращается в калифорний-249, и скорость распада составляет около 3% вещества в день, а также из-за сильной радиоактивности изотопа его кристаллическая решётка быстро разрушается с выделением тепла и гамма- и рентгеновских лучей. Всё это затрудняет изучение химических свойств эйнштейния[12].
Применение
Используется для получения менделевия при бомбардировке в циклотроне ядрами гелия[13].
Эйнштейний-254 был использован при попытке получения элемента унуненния путём бомбардировки мишени из этого изотопа ионами кальция-48, но ни один атом нового элемента не был обнаружен[14].
Также этот изотоп использовался в качестве калибровочного маркера в спектрометре для химического анализа лунной поверхности у зонда Сервейер-5[15].
Безопасность
При введении крысам только 0,01% эйнштейния попадает в кровоток, оттуда около 65% вещества попадает в кости, 25% — в лёгкие, 0,035% — в яички, или 0,01% — в яичники. Распределение эйнштейния по поверхности костей аналогично таковому у плутония. В костях крыс эйнштейний должен оставаться около 50 лет, а в лёгких — около 20, но это не имеет значения из-за короткого периода полураспада элемента, а также из-за короткой продолжительности жизни крыс[16].
Примечания
- Haire, p. 1579
- Seaborg, pp. 36–37
- Ghiorso, Albert (2003). “Einsteinium and Fermium”. Chemical and Engineering News. 81 (36): 174—175. DOI:10.1021/cen-v081n036.p174.
- Einsteinium
- Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3, pp. 18–23.
- Chetham-Strode, A.; Holm, L. (1956). “New Isotope Einsteinium-248”. Physical Review. 104 (5): 1314. Bibcode:1956PhRv..104.1314C. DOI:10.1103/PhysRev.104.1314.
- Harvey, Bernard; Chetham-Strode, Alfred; Ghiorso, Albert; Choppin, Gregory; Thompson, Stanley (1956). “New Isotopes of Einsteinium”. Physical Review. 104 (5): 1315—1319. Bibcode:1956PhRv..104.1315H. DOI:10.1103/PhysRev.104.1315.
- Kulyukhin, S.; Auerman, L. N.; Novichenko, V. L.; Mikheev, N. B.; Rumer, I. A.; Kamenskaya, A. N.; Goncharov, L. A.; Smirnov, A. I. (1985). “Production of microgram quantities of einsteinium-253 by the reactor irradiation of californium”. Inorganica Chimica Acta. 110: 25—26. DOI:10.1016/S0020-1693(00)81347-X.
- Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie, 102nd Edition, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, p. 1969.
- Peterson, J.R.; et al. (1979). “Preparation, characterization, and decay of einsteinium(II) in the solid state” (PDF). Le Journal de Physique. 40 (4): C4–111. CiteSeerX 10.1.1.729.8671. DOI:10.1051/jphyscol:1979435. manuscript draft
- Seaborg, p. 60
- Einsteinium. periodic.lanl.gov
- Менделевий. Книги. Наука и техника.
- Lougheed, R. W.; Landrum, J. H.; Hulet, E. K.; Wild, J. F.; Dougan, R. J.; Dougan, A. D.; Gäggeler, H.; Schädel, M.; Moody, K. J.; Gregorich, K. E.; Seaborg, G. T. (1985). “Search for superheavy elements using 48Ca + 254Esg reaction”. Physical Review C. 32 (5): 1760—1763. Bibcode:1985PhRvC..32.1760L. DOI:10.1103/PhysRevC.32.1760. PMID 9953034.
- Turkevich, A. L.; Franzgrote, E. J.; Patterson, J. H. (1967). “Chemical Analysis of the Moon at the Surveyor V Landing Site”. Science. 158 (3801): 635—637. Bibcode:1967Sci...158..635T. DOI:10.1126/science.158.3801.635. PMID 17732956.
- International Commission on Radiological Protection. Limits for intakes of radionuclides by workers, Part 4. — Elsevier Health Sciences, 1988. — Vol. 19. — P. 18–19. — ISBN 978-0-08-036886-3.