Высота треугольника

Высота треугольникаперпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону). В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника у тупоугольного треугольника.

Высота в треугольниках различного типа

Свойства

Свойства ортоцентра

Высоты треугольника

Свойства, связанные с описанной окружностью

  • Центр описанной около треугольника окружности служит ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника.
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О — центр описанной окружности ΔABC, то ,
    • , где — радиус описанной окружности; — длины сторон треугольника.
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона:
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона, имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный, и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек. Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек).
  • Теорема. В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема. В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Свойства середин высот треугольника

  • Теорема Шлёмильха. В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан.
  • Еще одна очевидная теорема. Середина высоты треугольника всегда лежит на пересекающей ее средней линии треугольника.
  • Теорема Ригби. Если к любой стороне остроугольного треугольника провести высоту и касающуюся ее с другой стороны вневписанную окружность, то точка касания последней с этой стороной, середина упомянутой высоты, а также инцентр лежат на одной прямой.[1].
  • Из теоремы Ригби следует, что 3 отрезка, соединяющих середину каждой из 3 высот треугольника с точкой касания вневписанной окружности, проведенной к той же стороне, что и высота, пересекаются в инцентре.
  • Середины X и Y двух высот треугольника ABC, а также середина K стороны BC, из концов которой эти две высоты выходят, а также ортоцентр H лежат на одной окружности, на которой также лежит и пятая точка D - основание третьей высоты AD[2].

Другие свойства

Свойства минимальной из высот

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Соотношения

  • где площадь треугольника, — длина стороны треугольника, на которую опущена высота.
  • где — произведение боковых сторон, — радиус описанной окружности
  • , где радиус вписанной окружности.
  • , где — площадь треугольника.
  • , — сторона треугольника к которой опускается высота .
  • Высота равнобедренного треугольника, опущенная на основание:
где — основание, — боковая сторона.
  • — высота в равностороннем треугольнике со стороной .

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике длиной , проведённая из вершины прямого угла, делит гипотенузу длиной на отрезки и , соответствующие катетам и , то верны следующие равенства:

  • ;

Теорема о проекциях

См. с. 51, ф. (1.11-4)[3]. Теорема о проекциях: . Из теоремы о проекциях следует то, что высота, опущенная, например, из вершины , делит противоположную ей сторону на две части и , считая от вершины к .

История

  • Утверждение: «Все 3 высоты треугольника пересекаются в одной точке», называемой теперь ортоцентром, в «Началах» Евклида отсутствует. Часть историков приписывает это утверждение Архимеду и называют его теоремой Архимеда[4]. Ортоцентр впервые в греческой математике использован в «Книге лемм» Архимеда, хотя явного доказательства существования ортоцентра Архимед не привёл.
  • В косвенной форме и в явном виде это утверждение («Все 3 высоты треугольника пересекаются в одной точке») встречается у Прокла (410-485) - комментатора Евклида[5].
  • Тем не менее до середины девятнадцатого века, ортоцентр нередко называли архимедовой точкой[6].
  • Другие историки математики считают автором первого доказательства Уильяма Чеппла (William Chapple (surveyor)) (Miscellanea Curiosa Mathematica, 1749 год)[7].
  • Сам термин ортоцентр впервые был использован У. Х. Безантом (W. H. Besant) в работе "Конические сечения, исследованные геометрически (1869)" ([8]) [9].

Вариации по теме. Высоты в четырёхугольнике

Теорема[10]. Пусть — вписанный четырёхугольник, — основание перпендикуляра (высоты), опущенного из вершины на диагональ ; аналогично определяются точки . Тогда точки лежат на одной окружности.

Это утверждение — следствие леммы о шестой окружности.

Две составные части высоты: предвысота и поствысота [11]

Три чевианы, проходящие через общую точку
  • На рис. справа в треугольнике ABC через точку O проведены 3 высоты: AD, BE и CF. Тогда точка O пересечения 3 высот разбивает каждую высоту на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем довысотой или предвысотой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем поствысотой.
  • Эти 2 термина введены по аналогии с операторами цикла с учетом их изображения на блок-схемах в информатике. Там есть понятия цикла соответственно с пред- и пост-условием в зависимости от того, стоит ли это условие перед или после тела цикла. У нас в роли тела цикла выступает точка O пересечения высот, а в роли условия – первый или второй конец отрезка, вводимого, как понятие для одной из двух частей высоты.
  • С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии.

Например, в любом треугольнике (в остро-, прямо-, и в тупоугольном) 3 произведения пред- и поствысоты совпадают [12]. Для остро-и прямоугольного треугольников это утверждение легко доказываемое. Оно верно и для любого тупоугольного треугольника, что удивительно, поскольку в таком треугольнике 2 из 3 высот даже не лежат внутри самого треугольника.

  • Замечание. На этом рис. справа в треугольнике ABC чевианы не являются высотами. На следующем рис. справа в треугольнике ABC три высоты:
Высоты в треугольнике ABC

Вариации по теме. Высоты в четырёхугольнике

Теорема[10]. Пусть — вписанный четырёхугольник, — основание перпендикуляра (высоты), опущенного из вершины на диагональ ; аналогично определяются точки . Тогда точки лежат на одной окружности.

Это утверждение — следствие леммы о шестой окружности.

Примечания

  1. Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: The Mathematical Association of America, 1996, ISBN 978-0883856390. p. 30, Figure 34, §3. An Unlikely Collinearity.
  2. Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: The Mathematical Association of America, 1996, ISBN 978-0883856390. p. 33, figure 40, §Exercise 3.2
  3. Корн Г.А., Корн Т.М. Справочник по математике для научных работников и инженеров. М.: «Наука», 1974. — 832 с.
  4. Ефремов Д. Новая геометрия треугольника. Одесса, 1902. С. 9, п. 16. Высоты треугольника. Теорема Архимеда.
  5. Nathan Altshiller-Court. "College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle". Second Edition. Mineola, New York: Dover Publications, Inc. 2007. P. 298, §175.
  6. Maureen T. Carroll, Elyn Rykken. Geometry: The Line and the Circle. Дата обращения: 10 апреля 2020.
  7. Bogomolny, Alexander, A Possibly First Proof of the Concurrence of Altitudes, <https://www.cut-the-knot.org/triangle/Chapple.shtml>. Проверено 17 ноября 2019.
  8. Conic Sections Treated Geometrically, 1869. Ссылка: 1895: Conic sections treated geometrically from Cornell University Historical Math Monographs.
  9. Nathan Altshiller-Court. "College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle". Second Edition. Mineola, New York: Dover Publications, Inc. 2007. P. 298, §176
  10. Вокруг задачи Архимеда. Упр. 7, рис. 11, следствие, c. 5.
  11. Стариков В.Н. 10-е исследование по геометрии (§ До- (пред-)- и пост-чевианы). Научный рецензируемый электронный журнал МГАУ "Наука и образование". 2020. № 1. 7 с.// http://opusmgau.ru/index.php/see/article/view/1604
  12. Nathan Altshiller-Court. "College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle". Second Edition. Mineola, New York: Dover Publications, Inc. 2007. P. 94, §177. Theorem.

Ссылки

См. также

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.