Теорема Ван-Обеля о треугольнике

Теорема Ван-Обеля

Формулировка

Случай, когда все три точки лежат на сторонах треугольника, а не на их продолжениях.
Случай, когда две точки лежат на продолжениях сторон.

Если прямые , , пересекают соответственно прямые , и , содержащие стороны треугольника , соответственно в точках , и , то имеет место равенство отношений направленных отрезков:

.

Замечания

  • Если отрезки сонаправлены (одинаково направлены), то верхние знаки направленных отрезков можно убрать, и мы получим скалярный вариант теоремы ван Обеля:
    .

О доказательствах

Обычно доказывается применением метода центров масс; доказательство можно также построить на основе теоремы Менелая.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.