Отношение направленных отрезков
Отноше́ние напра́вленных отре́зков — инвариант аффинной геометрии. Используется в формулировках теоремы Менелая, теоремы Чевы, теоремы Ван-Обеля и других.
Определение
Отношение направленных отрезков определено для двух отрезков и на одной прямой (или на параллельных прямых) и обозначается . С точностью до знака оно равно отношению длин , и величина положительна, если и сонаправлены, и отрицательна, если противонаправлены. Другими словами, величина определяется как число, удовлетворяющее следующему соотношению:
Связанные определения
Если три точки лежат на одной прямой, то отношение направленных отрезков называется также простым отношением точек ; оно положительно если лежит между и и отрицательно если лежит вне отрезка .
Свойства
- Отношение направленных отрезков является инвариантом аффинных преобразований.
См. также
Ссылки
- Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.