Дельтоид
Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, четыре стороны которого можно сгруппировать в две пары равных смежных сторон.
Свойства
- Углы между сторонами неравной длины равны.
- Диагонали взаимно перпендикулярны.
- В любой выпуклый дельтоид можно вписать окружность; кроме того, если дельтоид не является ромбом, то существует ещё одна окружность, касающаяся продолжений всех четырёх сторон (см. рисунок).
- Для любого невыпуклого дельтоида можно построить окружность, касающуюся двух бо́льших сторон и продолжений двух меньших сторон, и окружность, касающуюся двух меньших сторон и продолжений двух бо́льших сторон.
- Точка пересечения диагоналей делит одну из них пополам.
- Другая диагональ является биссектрисой углов.
- Одна диагональ делит дельтоид на два равных треугольника.
- Другая диагональ делит дельтоид на два равнобедренных треугольника, если он выпуклый, и достраивает его равнобедренным треугольником до равнобедренного треугольника, если он невыпуклый.
Площадь дельтоида
- Здесь приведены формулы, свойственные именно дельтоиду. См. также формулы для площади произвольных четырёхугольников.
- , где и — длины диагоналей.
- , где и — длины неравных сторон, а — угол между ними.
Частные случаи
- Если угол между неравными сторонами дельтоида прямой, то вокруг него можно описать окружность (вписанный дельтоид).
- Если пара противоположных сторон дельтоида равна, то такой дельтоид является ромбом.
- Если пара противоположных сторон и обе диагонали дельтоида равны, то дельтоид является квадратом. Квадратом является и вписанный дельтоид с равными диагоналями.
Разное
- Дельтоидами являются грани дельтоидального икоситетраэдра, дельтоидального гексеконтаэдра и трапецоэдра.
См. также
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.