Дельтоид

Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, четыре стороны которого можно сгруппировать в две пары равных смежных сторон.

На чертеже слева дельтоид выпуклый, справа — невыпуклый.

Свойства

Свойства дельтоида
Вписанная и вневписанная окружности выпуклого дельтоида .
  • Углы между сторонами неравной длины равны.
  • Диагонали взаимно перпендикулярны.
  • В любой выпуклый дельтоид можно вписать окружность; кроме того, если дельтоид не является ромбом, то существует ещё одна окружность, касающаяся продолжений всех четырёх сторон (см. рисунок).
  • Для любого невыпуклого дельтоида можно построить окружность, касающуюся двух бо́льших сторон и продолжений двух меньших сторон, и окружность, касающуюся двух меньших сторон и продолжений двух бо́льших сторон.
  • Точка пересечения диагоналей делит одну из них пополам.
  • Другая диагональ является биссектрисой углов.
  • Одна диагональ делит дельтоид на два равных треугольника.
  • Другая диагональ делит дельтоид на два равнобедренных треугольника, если он выпуклый, и достраивает его равнобедренным треугольником до равнобедренного треугольника, если он невыпуклый.

Площадь дельтоида

Здесь приведены формулы, свойственные именно дельтоиду. См. также формулы для площади произвольных четырёхугольников.
, где и  — длины диагоналей.
, где и  — длины неравных сторон, а  — угол между ними.

Частные случаи

  • Если угол между неравными сторонами дельтоида прямой, то вокруг него можно описать окружность (вписанный дельтоид).
  • Если пара противоположных сторон дельтоида равна, то такой дельтоид является ромбом.
  • Если пара противоположных сторон и обе диагонали дельтоида равны, то дельтоид является квадратом. Квадратом является и вписанный дельтоид с равными диагоналями.

Разное

См. также

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.