Характер группы

Хара́ктер — мультипликативная комплекснозначная функция на группе. Иначе говоря, если  — группа, то характер — это гомоморфизм из в мультипликативную группу поля (обычно поля комплексных чисел).

Иногда рассматриваются только унитарные характеры — гомоморфизмы в мультипликативную группу поля, образ которых лежит на единичной окружности, или, в случае комплексных чисел, гомоморфизмы в . Все прочие гомоморфизмы в называются в таком случае квазихарактерами.

Связанные определения

Свойства

  • Для произвольной группы множество характеров образует абелеву группу с операцией
    • Эту группу называют группой характеров.
  • Характеры линейно независимы, то есть если  — различные характеры группы G, то из равенства следует, что

Характеры в U(1)

Важным частным случаем характеров являются отображения в группу комплексных чисел, равных по модулю единице. Такие характеры имеют вид , где , и широко изучаются[1][2][3][4] в теории чисел в связи с распределением простых чисел в бесконечных арифметических прогрессиях. В этом случае изучаемой группой является кольцо вычетов с операцией сложения, а функция линейна. При этом множество различных значений линейного коэффициента в функции определяет группу характеров, изоморфную группе .

Классическим примером использования характеров по модулю является теорема Дирихле о простых числах в арифметической прогрессии.

Для бесконечных циклических групп, изоморфных , будет существовать бесконечное множество характеров вида , где .

Характеры конечнопорождённых групп

Для произвольной конечнопорождённой абелевой группы также можно[5] явно и конструктивно описать множество характеров в . Для этого используется теорема о разложении такой группы в прямое произведение циклических групп.

Поскольку любая циклическая группа порядка изоморфна группе и её характеры в всегда отображаются во множество , то для группы, представленной прямым произведением , циклических групп , можно параметризовать характер как произведение характеров циклических этих циклических групп:

Это позволяет провести явный изоморфизм между самой группой и группой её характеров, равной ей по количеству элементов.

Свойства характеров конечных групп

Для обозначим через характер, соответствующий элементу по описанной выше схеме.

Справедливы[6] следующие тождества:

Вариации и обобщения

Если  — ассоциативная алгебра над полем , характер  — это ненулевой гомоморфизм алгебры в . Если при этом  — звёздная алгебра,[уточнить] то характер является звёздным гомоморфизмом в комплексные числа.

См. также

Примечания

  1. А. О. Гельфонд, Ю. В. Линник, Элементарные методы в аналитической теории чисел, М:Физматгиз, 1962 г., с. 61-66, 78-97
  2. К. Чандрасекхаран, Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 142-165
  3. Г. Дэвенпорт, Мультипликативная теория чисел, М:Наука, 1971 г., с. 44-64
  4. А. Карацуба, Основы аналитической теории чисел, М:Наука, 1983 г., с. 114-157
  5. К. Чандрасекхаран, Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 145-147
  6. К. Чандрасекхаран, Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 147-159

Литература

  • Кириллов А. А. Элементы теории представлений. — 2-е. М.: Наука, 1978. — 343 с.
  • Наймарк М. А. Теория представления групп. М., 1978. — 560 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.