Прямое произведение
Прямо́е, или дека́ртово произведе́ние двух множеств — множество, элементами которого являются все возможные упорядоченные пары элементов исходных множеств.
Понятие прямого произведения естественно обобщается на произведение множеств с дополнительной структурой (алгебраической, топологической и так далее), поскольку произведение множеств часто наследует структуры, имевшиеся на исходных множествах.
Прямое произведение в теории множеств
Произведение двух множеств
в | в | в | в | в | в | в | |
---|---|---|---|---|---|---|---|
и | и | и | и | и | и | и | |
к | к | к | к | к | к | к | |
Произведение множества {в, и, к} на множество цветов радуги |
Пусть даны два множества и . Прямое произведение множества и множества есть такое множество , элементами которого являются упорядоченные пары для всевозможных и . Упорядоченную пару, образованную из элементов и , принято записывать, используя круглые скобки: . Элемент называют первой координатой (компонентой) пары, а элемент – второй координатой (компонентой) пары.
Прямое произведение двух множеств наглядно можно представить в виде таблицы, строки которой определяют элементы первого множества, а столбцы, соответственно, второго. Все клетки данной таблицы в таком случае будут элементами декартова произведения.
Слово «упорядоченная» значит, что для , . Так, пары и равны в том и только том случае, если и .
Важность «порядка» можно показать на примере обычной записи чисел: используя две цифры 3 и 5, можно записать четыре двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, в математике говорят об упорядоченных наборах элементов.
В упорядоченной паре может быть, что . Так, запись чисел 33 и 55 можно рассматривать как упорядоченные пары (3; 3) и (5; 5).
Отображения произведения множеств в его множители — и — называют координатными функциями.
Аналогично определяется произведение конечного семейства множеств.
Комментарии
Строго говоря, тождество ассоциативности не имеет места, но в силу существования естественного взаимно однозначного соответствия (биекции) между множествами и этим различием можно зачастую пренебречь.
Декартова степень
000 | 001 | 002 | 010 | 011 | 012 | 020 | 021 | 022 |
100 | 101 | 102 | 110 | 111 | 112 | 120 | 121 | 122 |
200 | 201 | 202 | 210 | 211 | 212 | 220 | 221 | 222 |
{0, 1, 2}3, 33 = 27 элементов |
---|
-я декартова степень множества определяется для целых неотрицательных , как -кратное декартово произведение на себя[1]:
Обычно обозначается как или .
При положительных декартова степень состоит из всех упорядоченных наборов элементов из длины . Так, вещественное пространство — множество кортежей из трех вещественных чисел — есть 3-я степень множества вещественных чисел
При , декартова степень по определению, содержит единственный элемент — пустой кортеж.
Прямое произведение семейства множеств
В общем случае, для произвольного семейства множеств (не обязательно различных) (множество индексов может быть бесконечным) прямое произведение определяется как множество функций, сопоставляющих каждому элементу элемент множества :
Отображения называются проекциями, и определяются следующим образом: .
В частности, для конечного семейства множеств любая функция с условием эквивалентна некоторому кортежу длины , составленному из элементов множеств , так, что на -ом месте кортежа стоит элемент множества . Поэтому декартово (прямое) произведение конечного числа множеств может быть записано так:
Прямое произведение отображений
Пусть — отображение из в , а — отображение из в . Их прямым произведением называется отображение из в : .
Аналогично вышеизложенному, данное определение обобщается на многократные и бесконечные произведения.
Воздействие на математические структуры
Прямое произведение векторных пространств
Декартово произведение двух векторных пространств и над общим полем — это множество упорядоченных пар векторов , то есть теоретико-множественное декартово произведение множеств векторов из и , с линейностью, заданной покоординатно: , .
Данное определение распространяется на любую индексированную систему линейных (векторных) пространств: декартовым произведением индексированной системы векторных пространств над общим полем является теоретико‑множественное декартово произведение множеств векторов сомножителей, на котором задана покоординатная линейность, то есть при суммировании суммируются все проекции, при умножении на число все проекции умножаются на это число: , .
Прямая сумма (копроизведение) векторных пространств есть такое подмножество их прямого произведения, элементы которого имеют лишь конечное число отличных от нуля проекций , где есть индексное множество индексированной системы . Для конечного числа слагаемых прямая сумма не отличается от прямого произведения.
Прямое произведение групп
Прямое (декартово) произведение двух групп и — это группа из всех пар элементов с операцией покомпонентного умножения: . Эта группа обозначается как . Ассоциативность операции умножения в группе следует из ассоциативности операций перемножаемых групп. Сомножители и изоморфны двум нормальным подгруппам своего произведения, и соответственно. Пересечение этих подгрупп состоит из одного элемента , который является единицей группы-произведения. Координатные функции произведения групп являются гомоморфизмами.
Это определение распространяется на произвольное число перемножаемых групп. В случае конечного числа прямое произведение изоморфно прямой сумме. Отличие возникает при бесконечном числе множителей.
В общем случае, , где и . (Операция в правой части — это операция группы ). Единицей группы-произведения будет последовательность, составленная из единиц всех перемножаемых групп: . Например, для счётного числа групп: , где в правой части стоит множество всех бесконечных двоичных последовательностей.
Подгруппа на множестве всех , носитель которых (то есть множество ) конечен, называется прямой суммой. Например, прямая сумма того же самого набора множеств содержит все двоичные последовательности с конечным числом единиц, а их можно трактовать как двоичные представления натуральных чисел.
Прямое произведение других алгебраических структур
Аналогично произведению групп можно определить произведения колец, алгебр, модулей и линейных пространств, причём в определении прямого произведения (см. выше) следует заменить нулём. Определение произведения двух (или конечного числа) объектов совпадает с определением прямой суммы. Однако, вообще говоря, прямая сумма отличается от прямого произведения: например, прямое произведение счётного множества копий суть пространство всех последовательностей действительных чисел, тогда как прямая сумма — пространство тех последовательностей, у которых только конечное число членов ненулевые (так называемых финитных последовательностей).
Прямое произведение топологических пространств
Пусть и — два топологических пространства. Топология произведения задаётся базой, состоящей из всевозможных произведений , где — открытое подмножество и — открытое подмножество .
Определение легко обобщается на случай произведения нескольких пространств. Для бесконечного произведения определение усложняется. Определим открытый цилиндр , где и — открытое подмножество .
Топология любого, в том числе бесконечного произведения будет задаваться базой, составленной из всевозможных пересечений конечного числа открытых цилиндров, тп есть задана на предбазе из открытых цилиндров. Данная топология является наведённой проекциями — это минимальная топология на теоретико‑множественном декартовом произведении, при которой все проекции непрерывны (такая топология аналогична компактно-открытой топологии пространств отображений, если считать индексное множество имеющим дискретную топологию).
Теорема Тихонова утверждает компактность произведений любого количества компактных пространств; однако для бесконечных произведений её не удаётся доказать без использования аксиомы выбора (или равносильных ей утверждений теории множеств).
Также теорема Александрова показывает, что любое топологическое пространство можно вложить в (бесконечное) произведение связных двоеточий, если только выполнена аксиома Колмогорова.
Прямое произведение графов
— | | |
| — | |
| | |
| — | |
Множество вершин прямого произведения двух графов и задаётся как произведение вершин графов сомножителей. Рёбрами будут соединены следующие па́ры вершин:
- , где и — соединённые ребром вершины графа , а — произвольная вершина графа ;
- , где — произвольная вершина графа , а и — соединённые ребром вершины графа .
Иначе говоря, множество рёбер произведения графов является объединением двух произведений: рёбер первого на вершины второго, и вершин первого на рёбра второго.
Вариации и обобщения
Идея прямого произведения получила дальнейшее развитие в теории категорий, где она послужила основой для понятия произведения объектов. Неформально, произведение двух объектов и — это наиболее общий объект в данной категории, для которого существуют проекции на и . Во многих категориях (множеств, групп, графов, …) произведением объектов является именно их прямое произведение. Важно, что в большинстве случаев важно не столько конкретное определение прямого произведения, сколько указанное выше свойство универсальности. Различные определения будут давать при этом изоморфные объекты.
См. также
Примечания
- Эдельман, 1975, с. 10.
Литература
- Эдельман С.Л. Математическая логика. — М.: Высшая школа, 1975. — 176 с.