Дизъюнктное объединение

Дизъюнктное объединение (также несвязное объединение или несвязная сумма) — это измененная операция объединения множеств в теории множеств, которая, неформально говоря, заключается в объединении непересекающихся «копий» множеств. В частности дизъюнктное объединение двух конечных множеств, состоящих из и элементов, будет содержать ровно элементов, даже если сами множества пересекаются.

Дизъюнктное объединение множеств и — это другое множество , которое состоит из всех элементов множеств и без идентификации повторяющих элементов из и как равны. В изображении принадлежит каждому полигону "этикетка" или "надпись", которая создает возможность различать между фигурами, которые иначе были бы идентически.

Определение

Пусть  — семейство множеств, перечисленных индексами из . Тогда дизъюнктное объединение этого семейства есть множество

Элементы дизъюнктного объединения являются упорядоченными парами . Таким образом есть индекс, показывающий, из какого множества элемент вошёл в объединение. Каждое из множеств канонически вложено в дизъюнктное объединение как множество

При множества и не имеют общих элементов, даже если . В вырожденном случае, когда множества равны какому-то конкретному , дизъюнктное объединение есть декартово произведение множества и множества , то есть

Использование

Иногда можно встретить обозначение для дизъюнктного объединения двух множеств или следующее для семейства множеств:

Такая запись подразумевает, что мощность дизъюнктного объединения равна сумме мощностей множеств семейства. Для сравнения, декартово произведение имеет мощность, равную произведению мощностей.

В категории множеств дизъюнктным объединением является прямая сумма. Термин дизъюнктное объединение также используется в отношении объединения семейства попарно непересекающихся множеств. В этом случае дизъюнктное объединение обозначается, как обычное объединение множеств, совпадая с ним. Такое обозначение часто встречается в информатике. Более формально, если  — это семейство множеств, то

есть дизъюнктное объединение в рассмотренном выше смысле тогда и только тогда, когда при любых и из выполняется следующее условие:

Вариации и обобщения

  • Если все множества дизъюнктного объединения наделены топологией, то само дизъюнктное объединение топологических пространств (то есть множеств наделённых топологией) имеет естественную топологию — самую сильную топологию такую, что каждое включение является непрерывным отображением. Дизъюнктное объединение с этой топологией называется несвязным объединением топологических пространств.

См. также

Литература

  • Александрян Р. А., Мирзаханян Э. А. Общая топология. М.: Высшая школа, 1979. — С. 132.
  • Спеньер Э. Алгебраическая топология. М.: Мир, 1971. — С. 9.
  • Мельников О. В. и др. Общая алгебра: В 2 т. Т. 1. М.: Наука, 1990. — С. 13. — ISBN 5020144266.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.