Арифметическая прогрессия

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага, или разности прогрессии):

Любой (n - й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формулам

где  — первый член прогрессии,  — её разность, — член арифметической прогрессии с номером .

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для любого её элемента выполняется условие .

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
 — где  — первый член прогрессии,  — второй член прогрессии  — член с номером .
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Сумма членов арифметической прогрессии от -ого до -ого

Сумма членов арифметической прогрессии с номерами от до может быть найдена по формулам

, где  — член с номером ,  — член с номером ,  — количество суммируемых членов.
  , где  — член с номером ,  — разность прогрессии,  — количество суммируемых членов.

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причём

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Следствие: если последовательность положительных чисел образует геометрическую прогрессию, то последовательность их логарифмов образует арифметическую прогрессию.

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

1, 4, 9, 16, 25, 36, …

разности которых образуют простую арифметическую прогрессию с разностью 2:

3, 5, 7, 9, 11, …

Треугольные числа также образуют арифметическую прогрессию второго порядка, их разности образуют простую арифметическую прогрессию

Тетраэдральные числа образуют арифметическую прогрессию третьего порядка, их разности являются треугольными числами.

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если  — арифметическая прогрессия порядка , то существует многочлен , такой, что для всех выполняется равенство [1]

Примеры

  • Натуральный ряд  — это арифметическая прогрессия, в которой первый член , а разность . Сумма первых членов натурального ряда называется «треугольным числом»:
  •  — первые 5 членов арифметической прогрессии, в которой и .
  • Если все элементы некоторой последовательности равны между собой и равны некоторому числу , то это есть арифметическая прогрессия, в которой и . В частности, есть арифметическая прогрессия с разностью .

Формула для разности

Если известны два члена арифметической прогрессии, а также их номера в ней, то можно найти разность как

.

Занимательная история

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050. Действительно, легко видеть, что решение сводится к формуле

то есть к формуле суммы первых чисел натурального ряда.

См. также

Ссылки

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.