Геометрическая прогрессия

Геометри́ческая прогре́ссия — последовательность чисел , , , (члены прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего члена умножением его на определённое число (знаменатель прогрессии). При этом [1].

Описание

Любой член геометрической прогрессии может быть вычислен по формуле

Если и , прогрессия является возрастающей последовательностью, если , — убывающей последовательностью, а при  — знакочередующейся[2], при  — стационарной.

Своё название прогрессия получила по своему характеристическому свойству:

то есть модуль каждого члена равен среднему геометрическому его соседей.

Примеры

Получение новых квадратов путём соединения середин сторон предыдущих квадратов
  • Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[3]:8—9.
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
  • 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  • , , ,  — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.

Свойства

  • Формула знаменателя геометрической прогрессии:
  • , если .
  • Произведение первых n членов геометрической прогрессии можно рассчитать по формуле
  • Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
  • Сумма первых членов геометрической прогрессии
  • Сумма всех членов убывающей прогрессии:
, то при , и
при .

См. также

Примечания

  1. Геометрическая прогрессия на mathematics.ru
  2. Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. М. : Советская энциклопедия, 1969—1978.
  3. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Mathesis, 1923.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.