Геометрическая прогрессия
Геометри́ческая прогре́ссия — последовательность чисел , , , (члены прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего члена умножением его на определённое число (знаменатель прогрессии). При этом [1].
Описание
Любой член геометрической прогрессии может быть вычислен по формуле
Если и , прогрессия является возрастающей последовательностью, если , — убывающей последовательностью, а при — знакочередующейся[2], при — стационарной.
Своё название прогрессия получила по своему характеристическому свойству:
то есть модуль каждого члена равен среднему геометрическому его соседей.
Примеры
- Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[3]:8—9.
- Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
- 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
- 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
- 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
- , , , — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
- 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
- 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.
Свойства
- Формула знаменателя геометрической прогрессии:
По определению геометрической прогрессии.
- Логарифмы членов геометрической прогрессии (если определены) образуют арифметическую прогрессию.
Формула общего члена арифметической прогрессии:
.
В нашем случае
,
.
- , если .
- Произведение первых n членов геометрической прогрессии можно рассчитать по формуле
Раскроем произведение : Выражение представляет собой арифметическую прогрессию с и шагом 1. Сумма первых n членов прогрессии равна Откуда
- Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
- Сумма первых членов геометрической прогрессии
- Доказательство через сумму:
- То есть или
- Откуда
- Доказательство индукцией по .
- Пусть
- При имеем:
- При имеем:
- Сумма всех членов убывающей прогрессии:
- , то при , и
- при .
Если то при Поэтому Следовательно
См. также
Примечания
- Геометрическая прогрессия на mathematics.ru
- Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Mathesis, 1923.