Теорема Стеклова

Теорема Стеклова — одна из фундаментальных теорем математической физики и теории рядов Фурье. Одно из важнейших применений теоремы Стеклова в теории дифференциальных уравнений в частных производных состоит в том, что она дает строгое математическое обоснование метода Фурье (разделения переменных) для решения смешанных краевых задач для уравнений гиперболического типа (например, уравнения колебаний струны).[1][2] Доказана в начале XX века русским математиком В. А. Стекловым.

Любая функция , удовлетворяющая условиям , разлагается в регулярно сходящийся ряд Фурье по ортогональной системе собственных функций задачи Штурма—Лиувилля, то есть

где скалярное произведение и ортогональность системы функций понимаются в смысле гильбертова пространства

Литература

  • Стеклов В. А. Основные задачи математической физики, ч. I—II. — Петроград, 1922—1923.
  • Владимиров В. С. Уравнения математической физики, — Любое издание.
  • Левитан Б. М., Саргсян И. С. Операторы Штурма-Лиувилля и Дирака, — М.: Наука, 1988.

Примечания

  1. Петровский И. Г. Лекции об уравнениях с частными производными, гл. II, раздел II.
  2. Владимиров В. С. Уравнения математической физики, гл. V, параграф 26.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.