Полипропилен

Полипропилен (PP) — термопластичный полимер пропилена (пропена).

Полипропилен

Международный знак вторичной переработки для полипропилена
Общие
Сокращения ПП, PP
Хим. формула (C3H6)n
Физические свойства
Плотность 0,92-0,93 г/см³
Термические свойства
Температура
  плавления 130–160 °C
Классификация
Рег. номер CAS 9003-07-0
Рег. номер EINECS 618-352-4
RTECS UD1842000
ChEBI 53550
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Получение

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов, например, катализаторов Циглера—Натта (например, смесь TiCl4 и AlR3):

nCH2=CH(CH3) → [-CH2-CH(CH3)-]n

Параметры, необходимые для получения полипропилена близки к тем, при которых получают полиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4—0,5 г/см³. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

Молекулярное строение

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический.

Изотактическая и синдиотактическая молекулярные структуры могут характеризоваться разной степенью совершенства пространственной регулярности.

Стереоизомеры полипропилена существенно различаются по механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный материал с высокой текучестью, температурой плавления — около 80 °C, плотностью — 850 кг/м³, хорошей растворимостью в диэтиловом эфире. Изотактический полипропилен по своим свойствам выгодно отличается от атактического, а именно: он обладает высоким модулем упругости, большей плотностью — 910 кг/м³, высокой температурой плавления — 165—170 °C и лучшей стойкостью к действию химических реагентов. Стереоблокполимер полипропилена при исследовании с помощью рентгеновских лучей обнаруживает определённую кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушение в кристаллической решётке. Изотактический и синдиотактический образуются случайным образом;

Физико-механические свойства

В отличие от полиэтилена, полипропилен менее плотный (плотность 0,91 г/см³, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140 °C, температура плавления 175 °C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Показатели основных физико-механических свойств полипропилена приведены в таблице:

Плотность, г/см³0,90—0,91
Разрушающее напряжение при растяжении, кгс/см250—400
Относительное удлинение при разрыве, %200—800
Модуль упругости при изгибе, кгс/см6700—11900
Предел текучести при растяжении, кгс/см250—350
Относительно удлинение при пределе текучести, %10—20
Ударная вязкость с надрезом, кгс·см/см²33—80
Твердость по Бринеллю, кгс/мм²6,0—6,5

Физико-механические свойства полипропилена разных марок приведены в таблице:

Показатели / марка01П10/00202П10/00303П10/00504П10/01005П10/02006П10/04007П10/08008П10/08009П10/200
Насыпная плотность, кг/л, не менее0,470,470,470,470,470,470,470,470,47
Показатель текучести расплава, г/10 мин≤00,2—0,40,4—0,70,7—1,21,2—3,53—65—155—1515—25
Относительное удлинение при разрыве, %, не менее600500400300300----
Предел текучести при разрыве, кгс/см, не менее260280270260260----
Стойкость к растрескиванию, ч, не менее400400400400400----
Характеристическая вязкость в декалине при 135 °C, 100 мл/г-----2,0—2,41,5—2,01,5—2,00,5—15
Содержание изотактической фракции, не менее-----95939593
Содержание атактической фракции, не более-----1,01,01,01,0
Морозостойкость, °C, не ниже-5-5-5------

Химические свойства

Полипропилен — химически стойкий материал. Заметное воздействие на него оказывают только сильные окислители — хлорсульфоновая кислота, дымящая азотная кислота, галогены, олеум. Концентрированная 58%-я серная кислота и 30%-й пероксид водорода при комнатной температуре действуют незначительно. Продолжительный контакт с этими реагентами при 60 °C и выше приводит к деструкции полипропилена.

В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 100 °C он растворяется в ароматических углеводородах, таких, как бензол, толуол. Данные о стойкости полипропилена к воздействию некоторых химических реагентов приведены в таблице.

СредаТемпература, °CИзменение массы, %Примечание
Продолжительность выдержки образца в среде реагента 7 суток
Азотная кислота, 50%-я70-0,1Образец растрескивается
Натр едкий, 40%-й70Незначительное
90
Соляная кислота, конц.70+0,3
90+0,5
Продолжительность выдержки образца в среде реагента 30 суток
Азотная кислота, 94%-я20-0,2Образец хрупкий
Ацетон20+2,0
Бензин20+13,2
Бензол20+12,5
Едкий натр, 40%-й20Незначительное
Минеральное масло20+0,3
Оливковое масло20+0,1
Серная кислота, 80%-я20НезначительноеСлабое окрашивание
Серная кислота, 98%-я20>>
Соляная кислота, конц.20+0,2
Трансформаторное масло20+0,2

Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при воздействии ультрафиолета и повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-м водном растворе эмульгатора ОП-7 при 50 °C для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряжённом состоянии, более 2000 ч.

Полипропилен — водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5 %, а при 60 °C — менее 2 %.

Теплофизические свойства

Полипропилен имеет более высокую температуру плавления, чем полиэтилен, и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176 °C. Максимальная температура эксплуатации полипропилена 120—140 ºC. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств.

Превосходя полиэтилен по теплостойкости, полипропилен уступает ему по морозостойкости. Его температура хрупкости (морозостойкости) колеблется от −5 до −15 ºC. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом).

Показатели основных теплофизических свойств полипропилена приведены в таблице:

Температура плавления, °C160—170
Теплостойкость по методу НИИПП, °C160
Удельная теплоёмкость (от 20 до 70ºС), кал/(г·°C)0,46
Термический коэффициент линейного расширения (от 20 до 100 °C), 1/°C1,1⋅10−4
Температура хрупкости, °CОт −5 до −15

Электрические свойства

Показатели электрических свойств полипропилена приведены в таблице:

Удельное объёмное электрическое сопротивление, Ом·см1016—1017
Диэлектрическая проницаемость при 106 Гц2,2
Тангенс угла диэлектрических потерь при 106 Гц2⋅10−4—5⋅10−5
Электрическая прочность (толщина образца 1 мм), кВ/мм30—40

Переработка

Основные способы переработки — формование методами экструзии, вакуум- и пневмоформования, экструзионно-выдувного, инжекционно-выдувного, инжекционного, компрессионного формования, литьё под давлением.

Применение

Овощи на рынке в полипропиленовых ящиках (таре)

Материал для производства плёнок (особенно упаковочных), мешков, тары, труб, деталей технической аппаратуры, пластиковых стаканчиков, предметов домашнего обихода, нетканых материалов, электроизоляционный материал, в строительстве для вибро- и шумоизоляции межэтажных перекрытий в системах «плавающий пол». При сополимеризации пропилена с этиленом получают некристаллизующиеся сополимеры, которые проявляют свойства каучука, отличающиеся повышенной химической стойкостью и сопротивлением старению.

Для вибро- и теплоизоляции также широко применяется пенополипропилен (ППП). Близок по характеристикам к вспененному полиэтилену (пенополиэтилен). Также встречаются декоративные экструзионные профили из ППП, заменяющие пенополистирол. Атактический полипропилен используют для изготовления строительных клеев, замазок, уплотняющих мастик, дорожных покрытий и липких плёнок.

Структура применения полипропилена в России в 2012 году была следующей: 38 % — тара, 30 % — нити, волокна, 18 % — плёнки, 6 % — трубы, 5 % — полипропиленовые листы, 3 % — прочее[1].

Рынок полипропилена

Полипропилен занимает второе место в мире среди полимеров по объёму потребления, с долей 26 % уступая только полиэтилену. Доля занимающего третью позицию поливинилхлорида (18 %) сокращается в пользу полипропилена. 76 % мирового потребления полипропилена приходится на гомополипропилен, остальное на сополимеры[2]. В России потребление полипропилена выросло с 250 тыс. т в 2002 году до 880 тыс. т в 2012 году[1], при этом остаётся на довольно низком уровне: 1,6 % от мирового[3] или 6 кг на человека в год против 18 кг/чел. в Западной Европе, 17 кг/чел. в США и 12 кг/чел. в Китае[2].

В мире наблюдается перепроизводство полипропилена: сейчас переизбыток оценивается в размере 7,4 млн тонн в год[1], в 2015 году при ожидаемом объёме мирового потребления 66 млн т производственные мощности составят 79 млн т[3].

5 крупнейших производителей полипропилена в мире (на 2011 год)[4]
№№ п/пКомпанияСтранаПроизводственные мощности, тыс. тоннДоля мирового рынка, %
1LyondellBasellНидерланды6 47111,24
2SinopecКитай4 9306,37
3SABICСаудовская Аравия3 4555,13
4PetroChinaКитай3 0384,69
5BraskemБразилия2 8144,60

Российское производство полипропилена началось в 1981 году на Томском нефтехимическом комбинате (ныне принадлежит «Сибуру»). В 1990-е годы установки по производству полипропилена были построены на Московском НПЗГазпром нефть» и «Сибур») и «Уфаоргсинтезе» («Башнефть»). В 2007 году производство полипропилена открылось на будённовском СтавроленеЛукойл»), а в 2013 году на омском Полиоме[2].

Крупнейшее российское производство полипропилена открылось 15 октября 2013 года — это принадлежащий «Сибуру» завод «Тобольск-Полимер»[1][2]. В момент запуска тобольского завода он входил в пятёрку самых мощных в мире (ещё два завода имели такую же мощность)[2][5]. Предприятие рассчитано на производство 510 тыс. т пропилена в год методом дегидрирования пропана (подрядчик — Maire Tecnimont, оборудование — UOP, получаемого на Тобольском нефтехимическом комбинате, и последующее производство из него 500 тыс. т полипропилена в год (подрядчик — Linde, оборудование — Ineos[1][4]. Мощности прочих российских заводов по выпуску полипропилена не превышают 250 тыс. т в год[2]. «Тобольск-Полимер» специализируется на выпуске гомополипропилена, в то время как производство сополимеров «Сибур» решил сосредоточить на Томском НХК и Московском НПЗ[4].

В 2015 году в России было произведено 1275 тыс. тонн полипропилена, при этом экспорт составил 350 тыс. тонн.[6][7]

По итогам 2020 года суммарный объем производства полипропилена (ПП) в России вырос на 31% в сравнении с аналогичным показателем 2019 года и составил около 1 883 тыс. тонн. Основной прирост объемов производства обеспечил ЗапСибНефтехим[8]

См. также

Примечания

  1. Пыжьянова В. Полипропиленовыми шапками закидаем // Эксперт-Урал : журнал. — Екатеринбург, 21 октября 2013. № 42 (575). Архивировано 3 января 2014 года.
  2. Море пластика из Тобольска // Эксперт : журнал. М., 21 октября 2013. № 42 (872).
  3. Серова Т. Спрос на полипропилен в мире растёт во всех отраслях применения. Plastinfo.ru. Дата обращения: 3 января 2014.
  4. Виньков А. Предтеча пиролизной печи // Эксперт : журнал. М., 5 ноября 2012. № 44 (826).
  5. Сиваков Д., Виньков А. Не заставляйте нас производить пластиковые тазики // Эксперт : журнал. М., 20 сентября 2010. № 37 (721).
  6. В 2015 году экспорт полипропилена из России вырос на 59%. www.mrcplast.ru. Дата обращения: 13 апреля 2016.
  7. В 2015 году выпуск полипропилена в России вырос на 23%. www.mrcplast.ru. Дата обращения: 13 апреля 2016.
  8. Выпуск полипропилена в России вырос на 31% в 2020 году

Литература

  • Перепёлкин В. П. Полипропилен, его свойства и методы переработки. — Л.: ЛДНТП, 1963. — 256 c.
  • Кренцель Б. А., Л. Г. Сидорова. Полипропилен. — Киев.: Техника, 1964. — 89 с.
  • Коллектив авторов (И. Амрож и т. д.). Полипропилен. Перевод со словацкого В. А. Егорова. Под ред. В. И. Пилиповского и И. К. Ярцева. — Л.: Химия, 1967. — 316 c.
  • Иванюков Д. В., М. Л. Фридман. Полипропилен. — М.: Химия, 1974. — 270 с.
  • Handbook of Polypropylene and Polypropylene Composites / ed. H.G. Karian. — NewYork.: MarcelDekker Inc, 2003. — 740 p.
  • Polypropylene. An A to Z reference / ed. J. Karger-Kocsis. Kluwer, 1999. — 987 p.
  • ГОСТ 26996-86 «Полипропилен и сополимеры пропилена».
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.