Тринитрофенол

2,4,6-Тринитрофенол (пикриновая кислота) — химическое соединение с химической формулой - C6H2(NO2)3OH, нитропроизводное фенола. Молекулярная масса 229,11 а. е. м. При нормальных условиях — жёлтое кристаллическое ядовитое вещество. Пикриновую кислоту и её соли (пикраты) используют как взрывчатые вещества, а также в аналитической химии для определения калия, натрия.

Тринитрофенол

Общие
Систематическое
наименование
2,4,6-тринитрофенол
Традиционные названия Пикриновая кислота
Хим. формула C6H3N3O7
Физические свойства
Молярная масса 229,10 г/моль
Плотность 1,763 г/см³
Термические свойства
Температура
  плавления 122 °C
  кипения > 300 °C
  разложения 300 °C
  вспышки 302 ± 1 ℉[1]
Давление пара 1 ± 1 мм рт.ст.[1]
Химические свойства
Константа диссоциации кислоты 0,25[2] и 0,38[3]
Растворимость
  в воде 1,27 г/100 мл
  в этаноле 8,33 г/100 мл
  в бензоле 10 г/100 мл
  в хлороформе 2,86 г/100 мл
Оптические свойства
Показатель преломления 1,76
Классификация
Рег. номер CAS 88-89-1
PubChem
Рег. номер EINECS 201-865-9
SMILES
InChI
RTECS TJ7875000
ChEBI 46149
ChemSpider
Безопасность
Предельная концентрация 0,1 мг/м³
ЛД50 98-120 мг/кг
Токсичность токсичен, весьма едкий, является ирритантом
Фразы риска (R) R1, R4, R11, R23, R24, R25
Фразы безопасности (S) S28, S35, S37, S45
Сигнальное слово Опасно
NFPA 704
4
3
4
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Другие названия:

История

Предположительно, соли пикриновой кислоты (пикраты свинца и калия) обнаружил в 1642 году Глаубер, воздействуя азотной кислотой (методы изготовления которой он разработал) на шерсть и рог.

В 1771 году Питер Вулф (en:Peter Woulfe) получил тринитрофенол действием азотной кислоты на природный краситель индиго[4]. Кислотные свойства соединения обнаружены в 1783 году Гаусманом[5]. При дальнейших исследованиях тринитрофенол получили при действии азотной кислотой на различные органические вещества: шёлк, природные смолы и прочие.

В 1841 Марчанд (Marchand) предложил формулу C12H6N6O14 (удвоенная формула тринитрофенола), а правильную формулу в 1842 году установил Лоран (Laurent), определив, что пикриновая кислота представляет собой тринитрофенол и может быть получена нитрованием фенола. Им же был выделен динитрофенол как продукт промежуточной стадии нитрования.

В 1869 году метод нитрования был усовершенствован Шмидтом и Глутцем (Schmidt, Glutz), предложившими сульфирование с последующим нитрованием. Взрывчатые свойства пикратов были обнаружены ещё в 1799 году Велтером (Welter), однако до 1830-х годов это свойство не находило применения. Во второй половине XIX века пикраты (в основном калия и аммония) стали широко использоваться в военном деле. Длительное время сам тринитрофенол использовался как жёлтый краситель для шерсти и шёлка и не считался взрывоопасным веществом, в 1871 году такой авторитетный специалист, как Абель, утверждал, что только пикраты обладают взрывчатыми свойствами, а тринитрофенол нет. Однако уже в 1873 году Шпренгель (Sprengel) показал способность тринитрофенола к детонации, а в 1886 году французский инженер Тюрпен (Turpin) обнаружил, что в сплавленном или сильно спрессованном состояниях тринитрофенол детонирует, и предложил его для снаряжения боеприпасов. Это дало начало широкому применению тринитрофенола в качестве мощного бризантного взрывчатого вещества.

Первое производство бризантных артиллерийских снарядов с плавленным тринитрофенолом было налажено во Франции, а затем во многих других странах. В Российской империи производство тринитрофенола началось в 1894 году. В Российской империи в военном деле было принято французское название этого вещества «мелинит». Артиллерийский офицер С. В. Панпушко разработал боеприпасы для тяжёлых и полевых орудий. Во время испытательных стрельб произошло два разрыва лёгких 87-мм полевых пушек с человеческими жертвами. 28 ноября 1891 года при взрыве опытной бомбы, снаряженной мелинитом, погиб и сам С. Панпушко и два его помощника, вместе с ним заряжавших роковой заряд, что затормозило разработки новых вооружений в России.

Во время русско-японской войны 1904—1905 годов японская армия применяла в широких масштабах снаряды «шимозе» к 75-мм полевым и горным пушкам, в которых заряд примерно 0,8 кг тринитрофенола был особым образом из расплава отлит в виде мелкозернистой массы. В этой же войне Японией были впервые применены крупнокалиберные (до 12 дюймов) снаряды корабельной артиллерии с массой заряда тринитрофенола до 41 кг, которые не могли пробить броневую защиту, но наносили значительные разрушения на палубах и показали хорошую эффективность. Русско-японская война стала апофеозом применения тринитрофенола.

Высокая активность ВВ, большое количество несчастных случаев (большое количество разрывов снарядов в стволах, да и взрыв броненосца «Микаса» многие приписывают капризу «шимозе») заставили химиков многих стран искать альтернативу. Таковым стал тринитротолуол.

Военное значение тринитрофенола сохранялось вплоть до Второй мировой войны, однако использовался он всё меньше и меньше. Уже в Первую мировой войну его использование было ограничено. В настоящее время привлекательность его из-за повышенной коррозионной активности и чувствительности по сравнению с тротилом невысока. В то же время относительная простота кустарного изготовления и высокая взрывная эффективность тринитрофенола привлекали и продолжают привлекать внимание террористов.

С осени 1944 года промышленность Германии в виду тяжёлого положения на фронтах отказывается от промышленного производства тринитротолуола в пользу тринитрофенола (А. Б. Широкорад, Бог войны Третьего рейха). По этой причине складированные и неразорвавшиеся германские боеприпасы представляют для поисковиков повышенную опасность.

Физические свойства

Чистый тринитрофенол — твёрдое вещество в виде пластинчатых или призматических кристаллов[6][7], цвет от бесцветного до жёлтого, плотность 1813 кг/м³, температура плавления 122,5 °C.

Кристаллическая система орторомбическая бипирамидальная.

Давление паров при 195 °C — 2 мм рт. ст., при 255 °C — 50 мм рт. ст. Плотность расплава при 124 °C 1589 кг/м³, при 170 °C — 1513 кг/м³. Гравиметрическая (насыпная) плотность порошка 900—1000 кг/м³.

Порошок хорошо прессуется, особенно при подогревании. При давлении прессования 4500 кг/см² плотность 1740 кг/м³, однако практически из соображений безопасности порошок прессуют при давлениях до 2000 кг/см², при этом получается плотность не выше 1630 кг/м³. При медленном охлаждении расплава можно получить твёрдое вещество с плотностью 1580—1610 кг/м³. Чем меньше примесей, тем выше плотность плавлёного тринитрофенола.

Химические свойства

Растворимость

В холодной воде растворяется слабо, около 1,1 % при +15 °C. В горячей воде растворимость значительно увеличивается до 6,5 % при 100 °C. По другим данным, при +20 °C растворяется 1,14 %, при +60 °C — 2,94 % и при 100 °C — 9,14 %. Водный раствор тринитрофенола окрашен в интенсивный желтый цвет благодаря присутствию аниона. Неионизированная молекула в безводных растворах цвета не имеет (например, в петролейном эфире). В присутствии сильных кислот раствор также не имеет окраски, это свойство позволяет использовать тринитрофенол в качестве кислотно-основного индикатора.

В этиловом спирте и диэтиловом эфире растворимость относительно высока. В 100 г спирта при +20 °C растворяется 6,23 г пикриновой кислоты, а при температуре кипения — 66,2 г. При +13 °C в 1 л безводного эфира растворяется 10,8 г пикриновой кислоты; при содержании в эфире 0,8 % воды растворяется 36,8 г, а присодержании 1 % воды — 40 г.
Растворяется в метиловом спирте, глицерине, хлороформе, сероуглероде, ацетоне и особенно хорошо в бензоле. В 100 г бензола растворяется 3,7 г при +5 °C, 7,29 г — при +15 °C, 9,55 г — при +20 °C и 96,77 г — при +75 °C.

В смесях серной кислоты и воды растворимость заметно возрастает при концентрации кислоты выше 70 % и при увеличении температуры. При температуре +18 °C растворимость в безводной серной кислоте 10,1 г/100 мл кислоты, а при +80 °C — 25,8 г/100 мл кислоты. При разбавлении раствора в серной кислоте тринитрофенол выпадает в осадок.

Эвтектические смеси

Тринитрофенол образует со многими веществами эвтектические смеси, что широко использовалось при снаряжении боеприпасов, поскольку температура плавления чистого тринитрофенола 122,5 °C создаёт значительные технологические сложности. Наиболее привлекательными с практической точки зрения являются смеси с другими нитросоединениями:

Взаимодействие с металлами

Тринитрофенол достаточно сильная кислота, способная к обменным реакциям с образованием солей металлов (пикратов). Наиболее часто встречаются:

Все пикраты — твёрдые кристаллические вещества, обладающие значительно более высокой чувствительностью, чем тринитрофенол. Это требует особого внимания к применению металлов и металлическим загрязнениям при его производстве. Прямое образование пикратов в среде серной кислоты не происходит, основную опасность представляют примеси в промывочной воде и материалы, с которыми контактирует очищенный тринитрофенол. Из-за повышенной чувствительности пикратов, при изготовлении боеприпасов требуются специальные меры по изоляции заряда от металлической оболочки.

Другие свойства

  • Характерная качественная реакция — с цианидом калия, в которой образуется ярко-красная изопурпуровая кислота.
  • Тринитрофенол со многими ароматическими химическими веществами образует нестойкие соединения, в которых не образуются полноценные ковалентные или ионные химические связи.
  • Окисляется сильными окислителями. В кипящей азотной кислоте окисляется до щавелевой кислоты. В кипящем растворе персульфата аммония полностью окисляется:

  • Взаимодействие с гипохлоритами приводит к разложению с образованием хлорпикрина, это один из промышленных способов его получения:

Взрывчатые свойства

Основные характеристики

  • Реакция разложения
  • Продукты взрыва в замкнутой бомбе: 71,05 % CO, 3,42 % CO2, 0,34 % O2, 1,02 % CH4, 13,8 % H2, 21,1 % N2
  • Кислородный баланс при окислении до CO2 : −45 %
  • Расчётные характеристики для разных плотностей:
ПоказательПри плотности 1,76 г/см³При плотности 1,00 г/см³
Состав продуктов взрыва
CO22,6611,310
CO0,1792,970
H2O (г)1,4991,409
N21,5001,496
C (тв)3,1601,713
H2-0,065
NH3-0,008
CH4-0,006
Скорость детонации, м/с76805545
Давление детонации, кбар26588
Теплота взрыва, ккал/г1,271,02
Объём продуктов взрыва, см³/г0,4230,714
  • Скорость детонации зависит от плотности:
Плотность, г/см³Скорость детонации, м/с
0,974965
1,326190
1,416510
1,627200
1,707480

Зависимость скорости детонации D от плотности ρ довольно точно описывается уравнением Кука (Cook):

D[м/с] = 5255 + 3045 (ρ[г/см³] — 1).

Размер зёрен, ммПлотность, г/см³Критический диаметр, мм
0,1—0,750,959,0
менее 0,10,955,5
0,01—0,050,82,1—2,3
0,05—0,070,73,6—3,7
  • Фугасность в свинцовом блоке 310 мл (тротил 285 мл, гексоген 470)
  • Бризантность по обжатию свинцового столбика 17 мм (тротил 16 мм, гексоген — 24)
  • Чувствительность в сплавленном состоянии ниже, чем в порошке. В присутствии пикратов чувствительность значительно возрастает.
  • Чувствительность к удару по сравнению с тротилом по одним данным ниже, а по другим — выше, в зависимости от условий испытаний. При испытании грузом 10 кг и высотой падения 25 см частость взрывов 24—32 % (тротил 4—8 %, гексоген 79—80 %, тэн 100 %)
  • При трении между твёрдыми материалами (сталь, чугун) порошок детонирует, между цветными металлами детонация не возникает.
  • При простреле свободно насыпанного порошка винтовочной пулей воспламеняется.
  • При простреле замкнутых оболочек с плавленным тринитрофенолом может быть выгорание, частичная или полная детонация в зависимости от характера оболочки и заряда. Чем прочнее оболочка, тем вероятнее детонация.
  • Чувствительность к нагреву:
Температура, °CЗадержка до взрыва, сек.
3501,5
3155,5
27726,3
26750,3
260не детонирует

Инициирование взрыва

Детонирует от капсюля-детонатора. Восприимчивость снижается с возрастанием плотности прессованного и ещё ниже у плавленного тринитрофенола:

  • при плотности 1580 кг/м³ (давление прессования 1500 кг/см²) детонирует от капсюля с 0,4 г гремучей ртути
  • при плотности 1680 кг/м³ (давление прессования 2900 кг/см²) необходим капсюль с 0,65 г гремучей ртути
  • для плавленного необходим капсюль с 3 г гремучей ртути, но на практике такими не пользуются и применяется промежуточный детонатор.
  • для различных условий масса азида свинца для инициирования 0,03-0,24 г

Свойства при нагревании

При нагревании в различных условиях:

  • при 122,5 °C плавится без разложения, в жидком состоянии жёлто-бурого цвета;
  • при медленном нагревании слабо возгоняется;
  • в свободном состоянии при 183 °C большой индукционный период до начала разложения, при уменьшении объёма для паров индукционный период уменьшается;
  • при 230 °C индукционный период до начала разложения отсутствует;
  • температура воспламенения 300—310 °C, в свободном состоянии сгорает без вспышки. Горит спокойно, сильно коптящим пламенем, с плавлением. Даже большие массы (порядка 100 кг) могут спокойно гореть, если при этом расплав свободно растекается;
  • при быстром нагревании в замкнутой оболочке до 300 °C взрывается.

Опасность в производстве и применении

  • Взрыв пикриновой кислоты в 1887 году на фабрике в Манчестере был вызван образованием пикратов во время пожара. Расплавленная от пламени пикриновая кислота попала на литопон, в результате чего образовался пикрат свинца. Он послужил детонатором, от которого взорвалась пикриновая кислота.
  • Пожар и взрыв в 1900 году на фабрике в Хаддерсфилде (Hudders-field) был вызван образованием пикрата железа на паровых трубах. При ремонте от удара пикрат железа загорелся, и пламя распространилось на сушилку пикриновой кислоты.
  • 6 декабря 1917 года в гавани канадского города Галифакс произошёл мощнейший взрыв корабля "Монблан", который среди всего прочего перевозил 2300 тонн сухой и жидкой пикриновой кислоты. В результате взрыва Галифакс был практически полностью разрушен. 1963 человека погибли, 9 тысяч получили ранения, 2 тысячи человек пропали без вести, а общий ущерб от взрыва оценивается в 35 миллионов канадских долларов.
  • На одной из фабрик во Франции вдоль железнодорожных путей образовались полосы пыли пикриновой кислоты. Значительное содержание кальция во влажной почве повлекло образование пикрата кальция. В жаркую сухую погоду он высох и вызвал пожар вдоль всех путей, по которым перемещали пикриновую кислоту.

Получение

Прямое нитрование фенола

Тринитрофенол может быть получен прямым нитрованием фенола в концентрированной азотной кислоте:

При этом идёт сильный разогрев, который приводит к разрушению и осмолению фенола, образованию различных побочных продуктов. Выход тринитрофенола низкий, в процессе происходит значительное разбавление кислоты. Тем не менее, этот способ был основным в период до и во время Первой мировой войны. Процесс осуществлялся в керамических горшках и обычно без перемешивания, поскольку растворы кислот корродировали металлы и загрязняли готовый продукт пикратами. Регулирование температуры также было затруднительно. Для преодоления недостатков этого способа были разработаны и нашли применение в производстве другие способы.

Синтез из фенола через фенолсульфокислоты

Из анисовой кислоты, содержащейся в анисовом, фенхелевом и ряде других эфирных масел, перегонкой выделяется анизол (масла Gaultheria procumbens, т. е. салицилово-метилового эфира[8]). Далее,

Фенол сильно окисляется (нитрирующей смесью), поэтому вначале его сульфируют, а потом нитруют азотной кислотой при нагревании. Следом за этим осуществляется электрофильное ипсо-замещение сульфогруппы на нитрогруппу.


Этим способом тринитрофенол получается из фенола последовательной обработкой серной и азотной кислотами. На первой стадии происходит сульфирование фенола до моно- и дисульфокислот, на второй стадии идёт нитрование сфенолсульфокислот с отщеплением сульфогрупп и образованием тринитрофенола:

Процесс также проводился в керамических горшках, стадии проводились последовательно. По сравнению с прямым нитрованием этот способ имеет как преимущества (меньшая опасность, отсутствие продуктов разложения фенола, более высокий выход), так и недостатки (значительно больший расход кислот). У этого способа много технологических разновидностей, которые можно объединить в две группы:

  • нитрование в относительно слабых растворах кислот с применением избытка серной кислоты на первой стадии, последующего разбавления и обработкой 65%-ной азотной кислотой (обычный способ) или натриевой селитрой («французский способ»).
  • нитрование в относительно крепких растворах кислот (метод Каста и его вариации). Крепкие кислоты позволяли использовать металлические аппараты с регулированием температуры и перемешиванием. По методу Каста сульфирование фенола проводилось в 20%-ном олеуме при соотношении 1:4 при температуре 90—100 °C в течение 5 часов, при этом образовывался дисульфофенол. Реакционная масса разбавлялась серной кислотой с плотностью 1,84 г/см³ (95,6 %), а затем проводилась нитрация азотной кислотой с плотностью 1,46 г/см³ (80 %) либо серно-азотной смесью.

Получение из бензола через хлорбензол

Процесс проводится в несколько стадий, некоторые оказались достаточно сложны в производстве и метод долго отрабатывался и получил распространение в период и после Первой мировой войны.

1. Хлорирование бензола до монохлорбензола:

.

2. Нитрования монохлорбензола до динитрохлорбензола смесью серной и азотной кислот:

.

3. Обработка динитрохлорбензола каустической содой (гидроокисью натрия) с получением динитрофенолята натрия:

.

4. Омыление динитрофенолята натрия серной кислотой с получением динитрофенола:

.

5. Получение тринитрофенола обработкой динитрофенола смесью серной и азотной кислот:

.

Практический выход тринитрофенола 1,6 тонны на 1 тонну бензола (54 % от теоретического). Недостаток способа — большие отходы растворов соляной кислоты.

Применение

  • Промежуточный продукт в производстве красителей. Им красили кожу, поскольку способен реагировать с белками в коже, давая темно-коричневый цвет.
  • Катализатор реакций полимеризации (например, полибутадиена).
  • компонент окрашивающего раствора Ван Гизона (Van Gieson) в гистологии.
  • Травитель в металловедении (ГОСТ 2567-54). Например, для выявления субструктуры феррита применяется травитель (4 г пикриновой кислоты; 96 мл этилового спирта)[9]. В металлургии, 4% пикриновая кислота в этаноле называется «picral» и широко использовалась в оптической металлографии, чтобы выявить границы зерен в ферритных сталях. Из-за опасности была заменена другими химическими травителями. Тем не менее, она все еще используется для травления магниевых сплавов, таких как AZ31.
  • Антисептическое средство.
  • общеалкалоидный осадительный реактив.
  • Пигмент для пометки лабораторных животных.

Хранение

Рекомендуется хранить в воде, поскольку тринитрофенол чувствителен к ударам и трению. Пикриновая кислота является особенно опасной, поскольку она является летучей и медленно сублимируется даже при комнатной температуре. Со временем накопление пикратов на открытых металлических поверхностях может представлять опасность взрыва.

Экология

Тринитрофенол имеет очень горький вкус. Пыль раздражает дыхательные пути. Продолжительное вдыхание и контакт со слизистыми и кожей ведут к поражению почек, кожным болезням. Слизистые оболочки глаз приобретают характерный жёлтый цвет.

Дополнительно

Примечания

  1. http://www.cdc.gov/niosh/npg/npgd0515.html
  2. https://www.lachimie.org/docs/org/ch8_alcools_phenols_thiols.pdf — С. 11.
  3. http://sciences-physiques.ac-montpellier.fr/ABCDORGA/Famille/Produit/ACIDEPICRIQUE.html
  4. Peter Woulfe (1771) Experiments to shew the nature of aurum mosaicum. Philosophical Transactions of the Royal Society of London 61: 114—130. See pages 127—130: «A method of dying wool and silk, of a yellow colour, with indigo; and also with several other blue and red colouring substances.» and «Receipt for making the yellow dye.» — where Woulfe treats indigo with nitric acid («acid of nitre»).
  5. MÉMOIRE SUR L'INDIGO ET SES DISSOLVANS; Par M. Jean-Michel Haussmann, à Colmar
  6. D`Ans, Ellen Lax. Taschenbuch für Chemiker und Physiker, Band II, Springer-Verlag 1964.
  7. A. Bernthsen: Kurzes Lehrbuch der organischen Chemie. Friedr. Vieweg & Sohn, Braunschweig 1914.
  8. Брокгауз и Ефрон. Брокгауз и Евфрон. Энциклопедический словарь, 2012..
  9. М.Беккерт, Х.Клемм. Справочник по металлографическому травлению..

Литература

  1. Шимозе // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). СПб., 1890—1907.
  2. Справочник по производству взрывчатых веществ./ Под ред. И. В. Лебедева. — ОНТИ, Госхимтехиздат. — М., Л. — 1934. — с. 146—170.
  3. Fedoroff, Basil T. et al Enciclopedia of Explosives and Related Items, vol.1—7. — Dover, New Jersey: Picatinny Arsenal. — 1960—1975. — P285-P295.
  4. Волков И. Подрывные средства при устройстве заграждений. — М.: Государственное военное издательство, 1933.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.