Плосконосая тривосьмиугольная мозаика

Плосконосая восьмиугольная мозаика порядка 3 — это полуправильная мозаика на гиперболической плоскости. Существует четыре треугольника и один восьмиугольник в каждой вершине. Символ Шлефли мозаики — sr{8,3}.

Плосконосая тривосьмиугольная мозаика
Конформно-евклидова модель гиперболической плоскости
Типгиперболическая однородная мозаика
Конфигурация
вершины
3.3.3.3.8
Символ Шлефлиsr{8,3} или
Символ
Витхоффа
| 8 3 2
Диаграмма
Коксетера — Дынкина
, или
Симметрии вращения[8,3]+, (832)
[8,4]+, (842)
[(4,4,4)]+, (444)
Двойственная
мозаика
Цветочная пятиугольная мозаика порядка 8-3
Свойствавершинно-транзитивная
хиральная

Иллюстрации

Представлена хиральная пара с отсутствующими рёбрами между чёрными треугольниками:

Связанные многогранники и мозаики

Эта полуправильная мозаика входит в последовательность плосконосых многогранников и мозаик с вершинной фигурой (3.3.3.3.n) и диаграммой Коксетера — Дынкина . Эти фигуры и их двойственные имеют вращательную симметрию (n32). Фигуры присутствуют на евклидовой плоскости (при n=6) и на гиперболических плоскостях для бо́льших n. Можно считать последовательность начинающейся с n=2, в этом случае грани вырождаются в двуугольники.

n32 симметрии плосконосых мозаик: 3.3.3.3.n
Симметрия
n32
Сферическая Евклидоваn Компактная гиперболич. Паракомп.
232 332 432 532 632 732 832 32
Плосконосые
фигуры
Конфигурация 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Фигуры
Конфигурация V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.

Из построения Витхоффа следует, что существует десять гиперболических однородных мозаик, основывающихся на правильной восьмиугольной мозаике.

Если нарисовать мозаики с исходными красными гранями, жёлтыми вершинами и синими рёбрами, существует 10 форм.

См. также

Примечания

    Литература

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass. Chapter 19, The Hyperbolic Archimedean Tessellations // The Symmetries of Things. — 2008. — ISBN 978-1-56881-220-5.
    • Coxeter H. S. M. Chapter 10: Regular honeycombs in hyperbolic space // The Beauty of Geometry: Twelve Essays. — Dover Publications, 1999. — ISBN 0-486-40919-8.

    Ссылки

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.