Гипотеза Крамера
Гипотеза Крамера — теоретико-числовая гипотеза, сформулированная шведским математиком Харальдом Крамером в 1936 году,[1] утверждающая, что
где обозначает n-е простое число, а O — это O большое. Грубо говоря, это означает, что интервалы между последовательными простыми числами всегда маленькие. Также гипотезой Крамера называют чуть более сильное утверждение:
Гипотеза Крамера пока не доказана и не опровергнута.
Эвристическое обоснование
Гипотеза Крамера основывается на вероятностной модели (существенно эвристической) распределения простых, в которой предполагается, что вероятность того, что натуральное число x является простым, равна примерно . Эта модель известна как Модель Крамера' простых. Крамер доказал в своей модели, что упомянутая гипотеза истинна с вероятностью 1[1].
Доказанные результаты о пробелах между простыми числами
Крамер также дал условное доказательство более слабого утверждения о том, что
предполагая истинной гипотезу Римана[1].
С другой стороны, E. Westzynthius доказал в 1931 году, что величина пробелов между простыми более чем логарифмическая. То есть,[2]
Гипотеза Крамера-Гранвилла
Даниэль Шенкс предложил гипотезу об асимптотическом равенстве для наибольших интервалов между простыми, не превышающими . Гипотеза Шенкса несколько сильнее, чем гипотеза Крамера:[3]
В вероятностной модели,
- с
Но константа возможно не такая, как для простых, по теореме Майера. Эндрю Гранвилл в 1995 году утверждал, что константа [4], где — постоянная Эйлера.
М. Вольф[5] предложил формулу для максимального расстояния между последовательными простыми числами меньшими . Формула Вольфа выражает через функцию распределения простых чисел :
где , а есть удвоенная константа простых-близнецов.
Томас Найсли вычислил много наибольших пробелов между простыми.[6] Он проверил качество гипотезы Крамера, измерив отношение R логарифма простых к квадратному корню из размера пробела между простыми:
Oн писал: «Для известных максимальных пробелов между простыми, R остаётся равным примерно 1,13,» что показывает, как минимум в диапазоне его вычислений, что грэнвиллево улучшение гипотезы Крамера не представляется лучшим приближением для имеющихся данных.
См. также
- Теорема о распределении простых чисел
- Интервалы между простыми числами
- Гипотеза Фирузбэхт — более сильная гипотеза
- Гипотеза Лежандра и гипотеза Андрицы — более слабые, но пока тоже не доказанные верхние оценки величины пробелов между простыми
Ссылки
- Weisstein, Eric W. Cramér Conjecture (англ.) на сайте Wolfram MathWorld.
- Weisstein, Eric W. Cramér-Granville Conjecture (англ.) на сайте Wolfram MathWorld.
Примечания
- Cramér, Harald (1936), On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica Т. 2: 23–46, <http://matwbn.icm.edu.pl/ksiazki/aa/aa2/aa212.pdf> Архивная копия от 23 июля 2018 на Wayback Machine.
- Westzynthius, Erik (1931), Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind, Commentationes Physico-Mathematicae Helsingfors Т. 5: 1-37.
- Shanks, Daniel (1964), On Maximal Gaps between Successive Primes, Mathematics of Computation (American Mathematical Society) . — Т. 18 (88): 646–651, DOI 10.2307/2002951.
- Granville, Andrew (1995), Harald Cramér and the distribution of prime numbers, Scandinavian Actuarial Journal Т. 1: 12–28, <http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf>.
- Wolf, Marek (2014), Nearest-neighbor-spacing distribution of prime numbers and quantum chaos, Phys. Rev. E Т. 89: 022922, <http://link.aps.org/doi/10.1103/PhysRevE.89.022922>
- Nicely, Thomas R. (1999), New maximal prime gaps and first occurrences, Mathematics of Computation Т. 68 (227): 1311–1315, doi:10.1090/S0025-5718-99-01065-0, <http://www.trnicely.net/gaps/gaps.html> Архивная копия от 30 декабря 2014 на Wayback Machine.