Физика за пределами Стандартной модели
Фи́зика за преде́лами Станда́ртной моде́ли (иначе называемая Но́вая фи́зика[1]) относится к теоретическим разработкам, которые необходимы, чтобы объяснить недостатки Стандартной модели, такие как происхождение массы, сильная CP-проблема, нейтринные осцилляции, асимметрия материи и антиматерии, происхождение тёмной материи и тёмной энергии.[2] Другая проблема заключается в математических основах самой Стандартной модели — Стандартная модель не согласуется с общей теорией относительности в том смысле, что одна или обе теории распадаются в своих описаниях на более мелкие при определённых условиях (например, в рамках известных сингулярностей пространства-времени, таких как Большой взрыв и горизонты событий чёрных дыр).
Теории, которые лежат за пределами Стандартной модели, включают в себя различные расширения Стандартной модели через суперсимметрию[1], такие, как Минимальная суперсимметричная стандартная модель и Следующая за минимальной суперсимметричная стандартная модель, либо совершенно новые объяснения, такие как теория струн, M-теория и дополнительные измерения. Поскольку эти теории, как правило, полностью согласуются с текущими наблюдаемыми явлениями или не доведены до состояния конкретных предсказаний, вопрос о том, какая теория является правильной (или по крайней мере «лучшим шагом» к Теории всего), может быть решён только с помощью экспериментов. В настоящее время это одна из наиболее активных областей исследований как в теоретической, так и в экспериментальной физике.
Проблемы Стандартной модели
Несмотря на то, что Стандартная модель в настоящее время является наиболее успешной теорией физики элементарных частиц, она несовершенна.[3]
Необъяснённые экспериментальные наблюдения
Есть целый ряд экспериментальных наблюдений за природой, для которых Стандартная модель не даёт адекватного объяснения.
- Гравитация. Стандартная модель не предоставляет объяснение гравитации. Кроме того, она несовместима с наиболее успешной теорией гравитации на сегодняшний день — Общей теорией относительности.
- Тёмная материя и тёмная энергия. Космологические наблюдения говорят нам, что Стандартная модель способна объяснить лишь около 4,5 % материи во Вселенной.[4] Из недостающих 95,5 % около 22,5 % должны быть тёмной материей, то есть материей, которая ведёт себя точно так же как другая материя, которую мы знаем, но которая слабо взаимодействует с полями Стандартной модели (наблюдательные данные говорят только о гравитационном взаимодействии). Остальное должно быть тёмной энергией, постоянной плотностью энергии вакуума. Попытки объяснить тёмную энергию с точки зрения энергии вакуума Стандартной модели (планковская энергия) приводят к несоответствию в 120 порядков.
- Массы нейтрино. Согласно Стандартной модели, нейтрино являются безмассовыми частицами. Тем не менее, эксперименты с нейтринными осцилляциями показали, что нейтрино имеют массу. Массовые члены для нейтрино могут быть добавлены к Стандартной модели вручную, но это приводит к новым теоретическим проблемам (например, массовые члены должны быть чрезвычайно малы).
- Асимметрия материи и антиматерии. Вселенная состоит по большей части из вещества. Тем не менее, Стандартная модель предсказывает, что вещество и антивещество должны были быть созданы в (почти) равных количествах, которые бы уничтожили друг друга, пока Вселенная охлаждалась.[4]
- Аномальное поведение мюона:
- Нарушение лептонной универсальности. Распад B-мезона с испусканием мюонных пар идет на 15% реже, чем с испусканием пар электронов, хотя согласно СМ эти два канала распада должны быть равновероятны[5].
- Измерения g-Фактора аномального магнитного момента мюона в экспериментах Muon g-2 расходятся с предсказаниями СМ[6][7].
Теоретические проблемы
Некоторые особенности Стандартной модели добавлены специальным способом. Они не являются проблемой по существу (то есть теория хорошо работает с этими специальными особенностями), но они предполагают недостаток понимания. Эти специальные особенности побудили теоретиков искать более фундаментальные теории с меньшим количеством параметров. Некоторые из специальных особенностей:
- Проблема иерархии фермионных масс. Стандартная модель вводит массы частиц посредством процесса, известного как спонтанное нарушение симметрии, вызванное полем Хиггса. В рамках Стандартной модели масса Хиггса получает некоторые очень большие квантовые поправки, связанные с присутствием виртуальных частиц (главным образом виртуальных топ-кварков). Эти поправки намного больше, чем фактическая масса Хиггса.[4] Это означает, что параметр голой массы Хиггса в Стандартной модели должен быть тонко настроен таким способом, который почти полностью отменяет квантовые поправки. Этот уровень тонкой настройки считается неестественным многими теоретиками.
- Сильная CP-проблема. Теоретически можно утверждать, что Стандартная модель должна содержать член, который нарушает CP-симметрию между материей и антиматерией — в части сильного взаимодействия. Экспериментально, однако, такое нарушение не было обнаружено, что означает, что коэффициент при этом члене очень близок к нулю. Эта тонкая настройка также считается противоестественной.
- Количество параметров. Стандартная модель зависит от 19 числовых параметров. Их значения известны из эксперимента, но происхождение значений неизвестно. Некоторые теоретики пытались найти связь между различными параметрами, например между массами частиц в разных поколениях.
Суперсимметрия
Суперсимметрия — гипотетическая симметрия, связывающая бозоны и фермионы в природе[8]. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.
Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счёт наличия суперпартнёров. К примеру, для фотона — фотино, кварка — скварк, хиггса — хиггсино и так далее. Суперпартнёры должны иметь значение спина, на полуцелое число отличающееся от значения спина у исходной частицы[9][10].
По состоянию на текущий момент суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами (за исключением спина). Данное требование не выполняется для известных в природе частиц. Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет. В таком случае частицы-суперпартнёры обычных частиц оказываются очень лёгкими по сравнению с обычными частицами[11].
Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий[11]. Ожидается, что Большой адронный коллайдер[12] сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные гипотезы, если ничего не будет обнаружено.
Теории Великого объединения
Стандартная модель имеет три калибровочные симметрии: цвета SU(3), слабого изоспина SU(2) и гиперзаряда U(1), соответствующие трём фундаментальным силам. Из-за перенормировки константы связи каждой из этих симметрий меняются в зависимости от энергии, при которой они измеряются. Около 1019 ГэВ эти связи становятся примерно равными. Это привело к предположению, что выше этой энергии три калибровочные симметрии Стандартной модели объединены в одной калибровочной симметрии с простой группой калибровочной группы и только одной константой связи. Ниже этой энергии симметрия спонтанно нарушена к стандартным симметриям модели.[13] Популярным выбором для объединяющей группы является специальная унитарная группа в пяти измерениях SU(5) и специальная ортогональная группа в десяти измерениях SO(10).[14]
Теории, которые объединяют симметрии Стандартной модели таким образом, называются теориями Великого объединения (или англ. Grand Unification Theories — GUT), а масштаб энергий, при которых единая симметрия нарушается, называется масштабом GUT. В общем, теории Великого объединения предсказывают создание магнитных монополей в ранней Вселенной[15] и нестабильность протона.[16] Эти предсказания, несмотря на интенсивный поиск, не подтверждаются экспериментально, и это налагает ограничения на возможные GUT.
Квантовая гравитация
Квантовая гравитация — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»).
Прочие
- Большие дополнительные измерения (ADD-модель)
- Модель Рэндалл — Сандрума
- Теория Калуцы — Клейна
- Двойная специальная теория относительности
- Исключительно простая теория всего
- Калибровочная теория гравитации
- Супергравитация
- Теория бозонных струн
- Теория суперструн
- Теория Янга — Миллса
- Техниколор
- Тонкая настройка
- Топологическая квантовая теория поля
См. также
- Хиггсовский механизм
- Бесхиггсовские модели
- Квантовая хромодинамика
- Естественность
- Голографический принцип
- Переменные Аштекара (Новые переменные)
- Причинная динамическая триангуляция
- Некоммутативная геометрия
- Физика конденсированного состояния
- Физика нечастиц
- Электрослабое взаимодействие
- Спонтанное нарушение электрослабой симметрии
- Преон
- Твистор
- Нерешённые проблемы современной физики
Примечания
- За пределами Стандартной модели . Элементы.ру. Дата обращения: 10 мая 2013. Архивировано 12 мая 2013 года.
- J. Womersley. «Beyond the Standard Model». (недоступная ссылка). Дата обращения: 30 июня 2011. Архивировано 17 октября 2007 года.
- Lykken, Beyond the Standard Model, arxiv.org:1005.1676.
- Валерий Рубаков Назрела необходимость в новой физике. // Знание - сила, 2021, № 6. — с. 47-51
- Intriguing new result from the LHCb experiment at CERN | CERN
- Ученые, возможно, обнаружили "пятую силу природы", до сих пор не известную науке // Русская служба Би-би-си, 7 апреля 2021
- Усилилось расхождение данных LHCb с предсказаниями Стандартной модели • Новости науки . «Элементы». Дата обращения: 9 апреля 2021.
- Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006, 368 с, страница 153. (djvu)
- Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, Adam G. Riess. Did LIGO detect dark matter? (англ.), Cornell University Library (1 March 2016).
- Нобелевский лауреат предположил открытие суперсимметрии (рус.), Lenta.ru (6 марта 2016).
- Существует ли суперсимметрия в мире элементарных частиц?
- Официальный короткий технический отчёт CERN от 2 июля 2008 года (недоступная ссылка) (англ.)
- Peskin, Michael Edward; Schroeder, Daniel V. An introduction to quantum field theory (неопр.). — Addison-Wesley, 1995. — С. 786—791. — ISBN 9780201503975.
- Buchmüller (2002), Neutrinos, Grand Unification and Leptogenesis, arΧiv:hep-ph/0204288v2 [hep-ph]
- Magnetic Monopoles
- Pran Nath & Pavel Fileviez Perez (2006), Proton stability in grand unified theories, in strings, and in branes, arΧiv:hep-ph/0601023v3 [hep-ph]
Ссылки
- Пол Шеллард и др. Квантовая гравитация (Quantum Gravity). Пер. с англ. В. Г. Мисовца. Ссылка проверена 08:45, 23 ноября 2007 (UTC).
- Zeeya Merali. Разделение времени и пространства. Новая квантовая теория отвергает пространство-время Эйнштейна // Scientific American. (December 2009)
- Г. Е. Горелик Матвей Бронштейн и квантовая гравитация. К 70-летию неразрешённой проблемы. // Успехи физических наук, Том 175, № 10 (октябрь 2005)