Кварк
Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдаемая в свободном состоянии, но входящая в состав адронов (сильно взаимодействующих частиц, таких как протоны и нейтроны). Кварки являются бесструктурными, точечными частицами; это проверено вплоть до масштаба примерно 10−16 см[3], что примерно в тысячу раз меньше размера протона.
Кварк (q) | |
---|---|
| |
Состав | фундаментальная частица |
Семья | фермион |
Поколение | есть кварки всех 3 поколений |
Участвует во взаимодействиях |
гравитационное[1], слабое, сильное, электромагнитное |
Античастица | антикварк (q) |
Кол-во типов | 6[2] (нижний, верхний, странный, очарованный, прелестный, истинный) |
Теоретически обоснована | М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году[3] |
Обнаружена | SLAC (~1968) |
Квантовые числа | |
Электрический заряд | Кратен e/3 |
Цветной заряд | r, g, b |
Барионное число | 1/3[4] |
Спин | ½[5] ħ |
Медиафайлы на Викискладе |
В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк — античастица с противоположными квантовыми числами.
Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году[3].
Название
Слово «кварк» было заимствовано Гелл-Манном[3] из романа Дж. Джойса «Поминки по Финнегану»[6], где в одном из эпизодов чайки кричат: «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Существует версия, выдвинутая Р. Якобсоном, согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh, польск. twaróg — «творог»)[7]. Согласно рассказу ирландского физика Лохлина О’Раферти, Джойс во время пребывания в Германии на сельскохозяйственной выставке услышал рекламный слоган «Drei Mark für Musterquark» («три марки за образцовый творог»), который был им позже перефразирован для романа[8].
Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.
Свойства кварков
Символ | Название | Заряд | Масса[~ 1] | |
---|---|---|---|---|
рус. | англ. | |||
Первое поколение | ||||
d | нижний | down | −1/3 | 4,8 ± 0,5 ± 0.3 МэВ/c² |
u | верхний | up | +2/3[9] | 2,3 ± 0,7 ± 0.5 МэВ/c² |
Второе поколение | ||||
s | странный | strange | −1/3 | 95±5 МэВ/c² |
c | очарованный | charm[10] (charmed) | +2/3 | 1275 ± 25 МэВ/c² |
Третье поколение | ||||
b | прелестный | beauty (bottom) | −1/3 | 4180 ± 30 МэВ/c² |
t | истинный | truth (top) | +2/3[11] | 174 340 ± 650 МэВ/c²[12] |
|
В силу неизвестных пока причин кварки естественным образом группируются в три так называемые поколения (они так и представлены в таблице). Кварки имеют дробный электрический заряд[13], а в каждом поколении один кварк обладает зарядом , а другой . Кварки одного поколения были бы неразличимы, если бы не поле Хиггса[14]. Подразделение на поколения распространяется также и на лептоны.
Кварки участвуют в сильных, слабых, электромагнитных и гравитационных[1] взаимодействиях. Сильные взаимодействия (обмен глюоном) могут изменять цвет кварка, но не меняют его аромат. Слабые взаимодействия, наоборот, не меняют цвет, но могут менять аромат. Необычные свойства сильного взаимодействия приводят к тому, что одиночный кварк не может удалиться на какое-либо существенное расстояние от других кварков, а значит, кварки не могут наблюдаться в свободном виде (явление, получившее название конфайнмент)[15]. Разлететься могут лишь «бесцветные» комбинации кварков — адроны. Кварки асимптотически свободны при высоких энергиях.
Математический аппарат теории кварков основан на экспериментально подтверждённом предположении, что взаимодействия кварков инвариантны относительно группы изоспиновых преобразований [16].
Кварк и антикварк могут аннигилировать. Однотипные разнозаряженные кварки аннигилируют, как правило, с испусканием двух фотонов (то есть через электромагнитные взаимодействия). Например, нейтральный пи-мезон π0, являющийся комбинацией лёгких кварка и антикварка распадается путём электромагнитной аннигиляции. Другие кварконии, более тяжёлые, чем нейтральный пион (J/ψ-мезон, ϒ-мезон и т. п.), могут аннигилировать с участием сильного взаимодействия в два или три глюона, в зависимости от суммарного спина, хотя такие процессы обычно подавлены правилом Окубо — Цвейга — Иизуки[17]. При высоких энергиях в столкновениях адронов наблюдается рост сечения процессов слабой (то есть идущей с участием слабого взаимодействия) аннигиляции кварков и антикварков в виртуальный или реальный W±- или Z0-бозон[18]. Следует отметить, что аннигилирующие кварк и антикварк не обязаны быть одного типа; так, доминирующий распад заряженного пи-мезона π+ → μ+νμ обусловлен слабой аннигиляцией разнотипной пары кварков du в виртуальный W+-бозон, который затем распадается в пару лептонов[19]. Наблюдаются и обратные аннигиляции процессы рождения кварк-антикварковых пар.
Дробный заряд кварков проявляется в процессе рождения струй адронов в аннигиляции e+e− при высоких энергиях[20].
Кварки порождаются глюонами только парой кварк-антикварк[21].
Доказательства существования кварков
Из-за контринтуитивного свойства сильного взаимодействия — конфайнмента — для неспециалиста зачастую нетривиально существование кварков, поскольку их невозможно увидеть в свободном виде, возникает сомнение, не являются ли они лишь математической абстракцией.
Причины, по которым кварки считают реально существующими объектами, таковы:
- Во-первых, в 1960-х годах стало ясно, что все многочисленные адроны подчиняются более или менее простой классификации: сами собой объединяются в мультиплеты и супермультиплеты. Иными словами, при описании всех этих мультиплетов требуется очень небольшое число свободных параметров. То есть, все адроны обладают небольшим числом степеней свободы: все барионы с одинаковым спином обладают тремя степенями свободы, а все мезоны — двумя. Первоначально гипотеза кварков как раз и заключалась в этом наблюдении, и слово «кварк», по сути, было краткой формой фразы «субадронная степень свободы».
- Далее, при учёте спина оказалось, что каждой такой степени свободы можно приписать спин ½ и, кроме того, каждой паре кварков можно приписать орбитальный момент — словно они и есть частицы, которые могут вращаться друг относительно друга. Из этого предположения возникло стройное объяснение и всему разнообразию спинов адронов, а также их магнитных моментов.
- Более того, с открытием новых частиц выяснилось, что никаких модификаций теории не требуется: каждый новый адрон удачно вписывался в кварковую конструкцию без каких-либо её перестроек (если не считать добавления новых кварков).
- Как проверить, что заряд у кварков действительно дробный? Кварковая модель предсказывала, что при аннигиляции высокоэнергетических электрона и позитрона будут рождаться не сами адроны, а сначала пары кварк-антикварк, которые потом уже превращаются в адроны. Результат расчёта течения такого процесса напрямую зависел от того, каков заряд рождённых кварков. Эксперимент полностью подтвердил эти предсказания[22].
- С наступлением эры ускорителей высокой энергии стало возможным изучать распределение импульса внутри, например, протона. Выяснилось, что импульс в протоне не распределён равномерно по нему, а частями сосредоточен в отдельных степенях свободы. Эти степени свободы назвали партонами (от англ. part — часть). Более того, оказалось, что партоны, в первом приближении, обладают спином ½ и теми же зарядами, что и кварки. С ростом энергии оказалось, что количество партонов растёт, но такой результат и ожидался в кварковой модели при сверхвысоких энергиях[23][24].
- С повышением энергии ускорителей стало возможным также попытаться выбить отдельный кварк из адрона в высокоэнергетическом столкновении. Кварковая теория давала чёткие предсказания, как должны были выглядеть результаты таких столкновений — в виде струй. Такие струи действительно наблюдались в эксперименте. Заметим, что если бы протон ни из чего не состоял, то струй бы заведомо не было.
- При высокоэнергетических столкновениях адронов вероятность того, что адроны рассеются на некоторый угол без разрушения, уменьшается с ростом величины угла. Эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая ожидается для объекта, состоящего из трёх кварков[25].
- При столкновениях протонов с высокими энергиями экспериментально наблюдается аннигиляция кварка одного протона с антикварком другого протона с образованием пары мюон-антимюон (процесс Дрелла — Яна)[26].
- Кварковая модель с позиций взаимодействия кварков между собой при помощи глюонов хорошо объясняет расщепление масс между членами декуплета [27].
- Кварковая модель хорошо объясняет расщепление масс между [28].
- Кварковая модель предсказывает для отношения магнитных моментов протона и нейтрона величину что находится в хорошем соответствии с экспериментальным значением −1,47. Для отношения магнитных моментов гиперона и протона теория кварков предсказывает величину , что также находится в хорошем соответствии с экспериментальным значением −0,29 ± 0,05[29].
- Есть и много других экспериментальных подтверждений кварковой модели строения адронов[30].
В целом, можно сказать, что гипотеза кварков и всё, что из неё вытекает (в частности, КХД), является наиболее консервативной гипотезой относительно строения адронов, которая способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.
Кварковая модель была признана физическим сообществом в 1976 году[31].
Открытые вопросы
В отношении кварков остаются вопросы, на которые пока нет ответа:
- почему ровно три цвета?
- почему ровно три поколения кварков?
- случайно ли совпадение числа цветов и числа поколений?
- случайно ли совпадение этого числа с размерностью пространства в нашем мире?
- откуда берётся такой разброс в массах кварков?
- из чего состоят кварки? (см. Преоны)[3]
- как кварки складываются в адроны[32]?
Впрочем, история с адронами и кварками, а также симметрия между кварками и лептонами, наводит на подозрение, что кварки могут сами состоять из чего-то более простого. Рабочее название для гипотетических частиц-составляющих кварков — преоны. С точки зрения данных экспериментов, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от экспериментов. Серьёзных успехов в этом направлении пока нет.
Другой подход состоит в построении теории Великого объединения. Польза от такой теории была бы не только в объединении сильного и электрослабого взаимодействий, но и в едином описании лептонов и кварков. Несмотря на активные усилия, построить такую теорию также пока не удалось.
Альтернативные модели
- Модель Сакаты (Shoichi Sakata), известная также как модель Ферми — Янга — Сакаты. Базис — p, n, Λ и их античастицы. Описывала все мезоны и барионы, известные на момент публикации.[33] Впоследствии базис расширялся до 4 частиц.[34]
- Барионные-антибарионные нонеты.[35]
См. также
- Кварк-глюонная плазма[36]
- Кварконий — мезон, состоящий из кварка и антикварка одного и того же типа
- Преоны — гипотетические частицы, из которых могли бы состоять кварки и лептоны
- Кварковая звезда — гипотетическая нейтронная звезда с экстремальной плотностью и вырожденным состоянием вещества
- Бесконечная вложенность материи
Примечания
- Удивительный мир внутри атомного ядра Вопросы после лекции .
- Кварки и восьмеричный путь
- КВАРКИ • Большая Российская Энциклопедия .
- кварки
- КВАРКИ Кварковая структура адронов
- Теория кварков, 1971, с. 33.
- В. В. Иванов. Ранние коптские заимствования в славянском // Славянская языковая и этноязыковая системы в контакте с неславянским окружением. — М.: Языки славянской культуры, 2002. — С. 57—58.
- H. Leutwyler. Insights and puzzles in particle physics // H. Fritzsch and M. Gell-Mann, eds. Fifty Years of Quarks. — Singapore: World Scientific, 2014. — arXiv:1410.4000.
- Основные понятия и законы физики и свойства элементарных частиц материи Лев Окунь Электромагнитное взаимодействие Нейтральные частицы.
- Физика элементарных частиц в преддверии запуска Большого адронного коллайдера В. А. Рубаков Научно-популярная лекция для школьников, ФИАН, 25 сентября 2008 года
- Классификация адронов Кварки и их свойства
- Э. Э. Боос, О. Брандт, Д. Денисов, С. П. Денисов, П. Граннис. Top-кварк (к 20-летию открытия) // УФН. — 2015. — Т. 185. — С. 1241–1269. — doi:10.3367/UFNr.0185.201512a.1241.
- На берегу океана непознанного: иллюзия простоты
- «Частица на краю Вселенной». Глава из книги Шон Кэрролл Симметрии слабых взаимодействий
- Игорь Иванов, кандидат физико-математических наук (Институт математики СО РАН, Новосибирск, и Льежский университет, Бельгия). Анатомия одной новости, или Как на самом деле физики изучают элементарные частицы: Почему кварки не бывают свободными. — Элементы.ру.
- Теория кварков, 1971, с. 40.
- Герасимов С. Б. Цвейга правило // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 418. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
- Аннигиляция
- Хлопов М. Ю. Аннигиляция // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 85—86. — 707 с. — 100 000 экз.
- Кварковая модель адронов Невылетание кварков
- КАЛИБРОВОЧНЫЕ БОЗОНЫ Глюоны
- Введение в кварки и партоны, 1982, с. 246.
- A. V. Belitsky, A. V. Radyushkin. Unraveling hadron structure with generalized parton distributions // Phys. Rept. — 2005. — № 418. — P. 1—387. — arXiv:hep-ph/0504030. arXiv:hep-ph/0504030
- Ядерная физика высоких энергий, 1980, с. 23.
- Элементы — новости науки: Результаты ALICE по асимметрии протонов и антипротонов ставят точку в давнем споре Архивная копия от 3 февраля 2012 на Wayback Machine
- Введение в кварки и партоны, 1982, с. 306.
- Введение в кварки и партоны, 1982, с. 369.
- Введение в кварки и партоны, 1982, с. 379.
- Теория кварков, 1971, с. 116.
- Ахиезер А. И., Рекало М. П. Кварковая модель и процессы взаимодействия адронов // Проблемы теоретической физики. Сборник, посвящённый Николаю Николаевичу Боголюбову в связи с его шестидесятилетием. — М., Наука, 1969. — Тираж 4000 экз. — c. 197—216
- Кваркам — полвека Алексей Левин «Троицкий вариант» № 11(155), 3 июня 2014 года От недоверия к принятию
- Игорь Иванов. Детектор ALICE изучает тонкие эффекты в рождении адронов . Сложные вопросы в физике элементарных частиц (2 августа 2013). Дата обращения: 9 августа 2013. Архивировано 30 августа 2013 года.
- S. Sakata. On a composite model for new particles Progr. Theor. Phys. 16 (1956), 686
- Y. Katayama, K. Matumoto, S. Tanaka, E. Yamada. Possible unified models of elementary particles with two neutrinos. Progr. Theor. Phys. 28 (1962), 675
- C. Z. Yuan, X. H. Mo, P. Wang. Baryon-antibaryon nonets Архивная копия от 24 января 2008 на Wayback Machine
- Крошечные капли кварк-глюонной плазмы образуются и в несимметричных ядерных столкновениях
Литература
- Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. — Cambridge University Press, 2002. — 415 p. — ISBN 9780511037276.
- Боголюбов Н.Н., Логунов А.А., Оксак А.И., Тодоров И.Т. Общие принципы квантовой теории поля. — Москва: Наука, 1987. — С. 3, 226-228, 362, 363, 366, 412, 414-416, 420, 421, 423, 425, 428, 561, 562, 571, 572, 574, 614. — 616 с.
- Намбу Ё. Кварки. — М.: Мир, 1984. — 225 с.
- Клоуз Ф. Введение в кварки и партоны. — М.: Мир, 1982. — 438 с.
- Никитин Ю. П., Розенталь И. Л. Ядерная физика высоких энергий. — М.: Атомиздат, 1980. — 232 с.
- Коккедэ Я. Теория кварков. — М.: Мир, 1971. — 341 с.
Ссылки
- Экспериментальная информация о кварках на сайте Particle Data Group.