Бозон

Бозо́н — частица или квазичастица с целым значением спина (собственного момента импульса), выраженного в единицах постоянной Дирака [2]. Бозоны, в отличие от фермионов, подчиняются статистике Бозе — Эйнштейна, которая допускает, чтобы в одном квантовом состоянии могло находиться неограниченное количество одинаковых частиц[3].

Бозон
Состав Может быть фундаментальной частицей, элементарной частицей, квазичастицей или составной
Классификация См. список бозонов
Участвует во взаимодействиях Гравитационное[1] (общее)
В честь кого или чего названа Бозе Шатьендранат
Квантовые числа
Спин Целый[2] ħ
 Медиафайлы на Викискладе

Бозоны получили название по фамилии индийского физика Ш. Бозе[4][5]. Термин «бозон» был предложен Полем Дираком[6].

Системы из двух и более одинаковых бозонов описываются чётными относительно перестановок частиц волновыми функциями: для любых двух частиц i и j.

Различают элементарные (фундаментальные) бозоны и составные.

Элементарные бозоны

Большинство элементарных бозонов являются квантами калибровочных полей, при помощи которых осуществляется взаимодействие элементарных фермионов (лептонов и кварков) в Стандартной модели. К таким калибровочным бозонам относят:

Кроме этого, к элементарным бозонам относят бозон Хиггса, ответственный за механизм появления масс в электрослабой теории, и не обнаруженный до настоящего времени гравитон (гравитационное взаимодействие).

Все элементарные бозоны, за исключением W±-бозонов, не имеют электрического заряда. Глюоны электрически нейтральны, но несут цветовой заряд.

W +- и W-бозоны по отношению друг к другу выступают как античастицы.

Калибровочные бозоны (фотон, глюон, W ±- и Z-бозоны) имеют единичный спин, бозон Хиггса несёт нулевой спин, гипотетический гравитон имеет спин 2.

Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны. (Термины — гиперссылки на статьи ВП)

Свойства фундаментальных бозонов

Название Заряд (e) Спин Масса (ГэВ) Переносимое взаимодействие
Фотон 0 1 0 Электромагнитное взаимодействие
W ± ±1 1 80,4 Слабое взаимодействие
Z 0 0 1 91,2 Слабое взаимодействие
Глюон 0 1 0 Сильное взаимодействие
Бозон Хиггса 0 0 ≈125 Поле Хиггса


Составные бозоны

Квантовая система, состоящая из произвольного числа бозонов и чётного числа фермионов, сама является бозоном. Примеры: ядро с чётным массовым числом A (поскольку нуклоны — протоны и нейтроны — являются фермионами, а массовое число равно суммарному числу нуклонов в ядре); атом или ион с чётной суммой числа электронов и массового числа ядра (поскольку электроны также являются фермионами, и общее количество фермионов в атоме/ионе равно сумме числа нуклонов в ядре и числа электронов в электронной оболочке). При этом орбитальные моменты импульса частиц, входящих в состав квантовой системы, не влияют на её классификацию как фермиона или бозона, поскольку все орбитальные моменты являются целыми, и их добавление в любой комбинации к суммарному целому спину системы не может превратить его в полуцелый (и наоборот). Система, содержащая нечётное число фермионов, сама является фермионом: её суммарный спин всегда полуцелый. Так, атом гелия-3, состоящий из двух протонов, нейтрона и двух электронов (в сумме пять фермионов) является фермионом, а атом лития-7 (три протона, четыре нейтрона, три электрона) является бозоном. Для нейтральных атомов число электронов совпадает с числом протонов, то есть сумма числа электронов и протонов всегда чётна, поэтому фактически классификация нейтрального атома как бозона/фермиона определяется чётным/нечётным числом нейтронов в его ядре.

В частности, к составным бозонам относятся многочисленные двухкварковые связанные состояния, называемые мезонами. Как и у любых систем из двух (и вообще чётного числа) фермионов, спин мезонов является целочисленным, и его значение, в принципе, не ограничено (0, 1, 2, 3, …).

Бозонные звёзды

Бозонная звезда — гипотетический астрономический объект, состоящий из бозонов (в отличие от обычных звёзд, состоящих преимущественно из фермионов — электронов и нуклонов). Для того, чтобы подобный тип звёзд мог существовать, должны существовать стабильные бозоны, обладающие малой массой (например, аксионы — гипотетические лёгкие частицы, рассматривающиеся как один из кандидатов на роль составляющих тёмной материи)[7][8].

Квазичастицы

Квазичастицы, описываемые как кванты коллективных возбуждений в многочастичных системах (например, в конденсированных средах), также могут нести спин и классифицироваться как бозоны и фермионы. В частности, бозонами являются фононы («кванты звука»), магноны (кванты спиновых волн в магнетиках), ротоны (возбуждения в сверхтекучем гелии-4).

Примечания

  1. Удивительный мир внутри атомного ядра. Вопросы после лекции, ФИАН, 11 сентября 2007 года
  2. Физика атомного ядра. Введение. msu.ru. Дата обращения: 21 апреля 2017.
  3. Существует ли суперсимметрия в мире элементарных частиц?. postnauka.ru. Дата обращения: 21 апреля 2017.
  4. Daigle, Katy. India: Enough about Higgs, let's discuss the boson (10 июля 2012).
  5. Bal, Hartosh Singh. The Bose in the Boson, The New York Times blog (19 сентября 2012). Архивировано 22 сентября 2012 года.
  6. Санюк В. И., Суханов А. Д. Дирак в физике XX века. С. 982—983.
  7. Madsen, Mark S.; Liddle, Andrew R. The cosmological formation of boson stars (англ.) // Physics Letters B : journal. — 1990. Vol. 251, no. 4. doi:10.1016/0370-2693(90)90788-8.
  8. Torres, Diego F.; Capozziello, S.; Lambiase, G. Supermassive boson star at the galactic center? (англ.) // Physical Review D : journal. — 2000. Vol. 62, no. 10. doi:10.1103/PhysRevD.62.104012.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.