Бозон
Бозо́н — частица или квазичастица с целым значением спина (собственного момента импульса), выраженного в единицах постоянной Дирака [2]. Бозоны, в отличие от фермионов, подчиняются статистике Бозе — Эйнштейна, которая допускает, чтобы в одном квантовом состоянии могло находиться неограниченное количество одинаковых частиц[3].
Бозон | |
---|---|
Состав | Может быть фундаментальной частицей, элементарной частицей, квазичастицей или составной |
Классификация | См. список бозонов |
Участвует во взаимодействиях | Гравитационное[1] (общее) |
В честь кого или чего названа | Бозе Шатьендранат |
Квантовые числа | |
Спин | Целый[2] ħ |
Медиафайлы на Викискладе |
Бозоны получили название по фамилии индийского физика Ш. Бозе[4][5]. Термин «бозон» был предложен Полем Дираком[6].
Системы из двух и более одинаковых бозонов описываются чётными относительно перестановок частиц волновыми функциями: для любых двух частиц i и j.
Различают элементарные (фундаментальные) бозоны и составные.
Элементарные бозоны
Большинство элементарных бозонов являются квантами калибровочных полей, при помощи которых осуществляется взаимодействие элементарных фермионов (лептонов и кварков) в Стандартной модели. К таким калибровочным бозонам относят:
- фотон (электромагнитное взаимодействие),
- глюон (сильное взаимодействие)
- W ±- и Z-бозоны (слабое взаимодействие).
Кроме этого, к элементарным бозонам относят бозон Хиггса, ответственный за механизм появления масс в электрослабой теории, и не обнаруженный до настоящего времени гравитон (гравитационное взаимодействие).
Все элементарные бозоны, за исключением W±-бозонов, не имеют электрического заряда. Глюоны электрически нейтральны, но несут цветовой заряд.
W +- и W −-бозоны по отношению друг к другу выступают как античастицы.
Калибровочные бозоны (фотон, глюон, W ±- и Z-бозоны) имеют единичный спин, бозон Хиггса несёт нулевой спин, гипотетический гравитон имеет спин 2.
Свойства фундаментальных бозонов
Название | Заряд (e) | Спин | Масса (ГэВ) | Переносимое взаимодействие |
Фотон | 0 | 1 | 0 | Электромагнитное взаимодействие |
W ± | ±1 | 1 | 80,4 | Слабое взаимодействие |
Z 0 | 0 | 1 | 91,2 | Слабое взаимодействие |
Глюон | 0 | 1 | 0 | Сильное взаимодействие |
Бозон Хиггса | 0 | 0 | ≈125 | Поле Хиггса |
Составные бозоны
Квантовая система, состоящая из произвольного числа бозонов и чётного числа фермионов, сама является бозоном. Примеры: ядро с чётным массовым числом A (поскольку нуклоны — протоны и нейтроны — являются фермионами, а массовое число равно суммарному числу нуклонов в ядре); атом или ион с чётной суммой числа электронов и массового числа ядра (поскольку электроны также являются фермионами, и общее количество фермионов в атоме/ионе равно сумме числа нуклонов в ядре и числа электронов в электронной оболочке). При этом орбитальные моменты импульса частиц, входящих в состав квантовой системы, не влияют на её классификацию как фермиона или бозона, поскольку все орбитальные моменты являются целыми, и их добавление в любой комбинации к суммарному целому спину системы не может превратить его в полуцелый (и наоборот). Система, содержащая нечётное число фермионов, сама является фермионом: её суммарный спин всегда полуцелый. Так, атом гелия-3, состоящий из двух протонов, нейтрона и двух электронов (в сумме пять фермионов) является фермионом, а атом лития-7 (три протона, четыре нейтрона, три электрона) является бозоном. Для нейтральных атомов число электронов совпадает с числом протонов, то есть сумма числа электронов и протонов всегда чётна, поэтому фактически классификация нейтрального атома как бозона/фермиона определяется чётным/нечётным числом нейтронов в его ядре.
В частности, к составным бозонам относятся многочисленные двухкварковые связанные состояния, называемые мезонами. Как и у любых систем из двух (и вообще чётного числа) фермионов, спин мезонов является целочисленным, и его значение, в принципе, не ограничено (0, 1, 2, 3, …).
Бозонные звёзды
Бозонная звезда — гипотетический астрономический объект, состоящий из бозонов (в отличие от обычных звёзд, состоящих преимущественно из фермионов — электронов и нуклонов). Для того, чтобы подобный тип звёзд мог существовать, должны существовать стабильные бозоны, обладающие малой массой (например, аксионы — гипотетические лёгкие частицы, рассматривающиеся как один из кандидатов на роль составляющих тёмной материи)[7][8].
Квазичастицы
Квазичастицы, описываемые как кванты коллективных возбуждений в многочастичных системах (например, в конденсированных средах), также могут нести спин и классифицироваться как бозоны и фермионы. В частности, бозонами являются фононы («кванты звука»), магноны (кванты спиновых волн в магнетиках), ротоны (возбуждения в сверхтекучем гелии-4).
Примечания
- Удивительный мир внутри атомного ядра. Вопросы после лекции, ФИАН, 11 сентября 2007 года
- Физика атомного ядра. Введение . msu.ru. Дата обращения: 21 апреля 2017.
- Существует ли суперсимметрия в мире элементарных частиц? . postnauka.ru. Дата обращения: 21 апреля 2017.
- Daigle, Katy. India: Enough about Higgs, let's discuss the boson (10 июля 2012).
- Bal, Hartosh Singh. The Bose in the Boson, The New York Times blog (19 сентября 2012). Архивировано 22 сентября 2012 года.
- Санюк В. И., Суханов А. Д. Дирак в физике XX века. С. 982—983.
- Madsen, Mark S.; Liddle, Andrew R. The cosmological formation of boson stars (англ.) // Physics Letters B : journal. — 1990. — Vol. 251, no. 4. — doi:10.1016/0370-2693(90)90788-8.
- Torres, Diego F.; Capozziello, S.; Lambiase, G. Supermassive boson star at the galactic center? (англ.) // Physical Review D : journal. — 2000. — Vol. 62, no. 10. — doi:10.1103/PhysRevD.62.104012.