Мезон
Мезо́н (от др.-греч. μέσος ‘средний’) — адрон[1], имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы (π-мезоны), каоны (K-мезоны) и другие, более тяжёлые, мезоны.
Первоначально мезоны были предсказаны как частицы, являющиеся переносчиками сильного взаимодействия и отвечающие за удержание протонов и нейтронов в атомных ядрах.
Все мезоны нестабильны. Благодаря наличию энергии связи масса мезона во много раз больше суммы масс составляющих его кварков.
Предсказание и обнаружение
В 1934 году японский физик Х. Юкава построил первую количественную теорию взаимодействия нуклонов, происходящего посредством обмена ещё не открытыми тогда частицами, которые сейчас известны как пионы (или пи-мезоны). Впоследствии Х. Юкава был награждён в 1949 году Нобелевской премией по физике — за предсказание существования мезонов на основе теоретической работы по ядерным силам[2][3].
Первоначально термин «мезон» имел смысл «средний по массе», поэтому первым в разряд мезонов попал (из-за подходящей массы) обнаруженный в 1936 году мюон, который назвали μ-мезоном. Сначала его и приняли за мезон Юкавы; однако в 1940-х годах было установлено, что мюон не подвержен сильному взаимодействию и относится, как и электрон, к классу лептонов (поэтому и название μ-мезон является неправильным, так что специалисты обычно его избегают). Первым настоящим мезоном оказался открытый в 1947 году пион, действительно являющийся переносчиком ядерных взаимодействий в соответствии с теорией Юкавы (данную роль он выполняет на расстояниях порядка комптоновской длины волны пиона, составляющей примерно 1,46·10−15 м, в то время как на меньших расстояниях существенный вклад в ядерные взаимодействия вносят более тяжёлые мезоны: ρ-, φ-, ω-мезоны и др.)[2][4].
До открытия тетракварков считалось, что все известные мезоны состоят из пары кварк-антикварк (т. н. валентных кварков) и из «моря» виртуальных кварк-антикварковых пар и виртуальных глюонов. При этом валентные кварки могут существовать не только в «чистом» виде, но и в виде суперпозиции состояний с разным ароматом; например, нейтральный пион не является ни парой , ни парой кварков, а представляет собой суперпозицию обоих: [5].
В зависимости от комбинации значений полного углового момента J и чётности P (обозначается JP) различают псевдоскалярные (0-), векторные (1-), скалярные (0+), псевдовекторные (1+) и другие мезоны[6]. Псевдоскалярные мезоны имеют минимальную энергию покоя, так как в них кварк и антикварк имеют антипараллельные спины; после них следуют более тяжёлые векторные мезоны, в которых спины кварков параллельны. Эти же и другие типы мезонов встречаются в более высоких энергетических состояниях, в которых спин складывается с орбитальным угловым моментом (сегодняшняя картина внутриядерных сил довольно сложна, для детального ознакомления с ролью мезонов, см. Современное состояние теории сильных взаимодействий).
Начиная с 2003 года в физических журналах появлялись сообщения об открытии частиц, рассматриваемых как «кандидаты» в тетракварки. Природа одной из них — мезонного резонанса Z(4430), впервые обнаруженного коллаборацией Belle в 2007 году[7], была надёжно подтверждена в 2014 году в экспериментах коллаборации LHCb[8]. Установлено, что этот резонанс имеет кварковый состав и относится к типу псевдовекторных мезонов[9].
Номенклатура мезонов[10]
Имя мезона образуется так, чтобы оно определяло его основные свойства. Соответственно, по заданным свойствам мезона можно однозначно определить его наименование. Способы именования разделяются на две категории, в зависимости от того, имеет мезон «аромат» или нет.
Мезоны без аромата
Мезоны без аромата — это такие мезоны, все квантовые числа ароматов которых равны нулю. Это означает, что эти мезоны являются состояниями кваркония (пар кварк-антикварк одинакового аромата) или линейными комбинациями таких состояний.
Имя мезона определяется его суммарным спином S и суммарным орбитальным угловым моментом L. Так как мезон составлен из двух кварков с s = 1/2, суммарный спин может быть только S = 1 (параллельные спины) или S = 0 (антипараллельные спины). Орбитальное квантовое число L появляется за счет вращения одного кварка вокруг другого. Обычно больший орбитальный момент проявляется в виде большей массы мезона. Эти два квантовых числа определяют чётность P и (для нейтральных мезонов) зарядово-сопряжённую чётность C мезона:
- P = (−1)L+1
- C = (−1)L+S
Также L и S складываются в полный угловой момент J, который может принимать значения от |L−S| до L+S с шагом единица. Возможные комбинации описываются при помощи символа (терма) 2S+1LJ (вместо числового значения L используется буквенный код, см. спектроскопические символы) и символа JPC (для обозначения используется только знак P и C).
Возможные комбинации и соответствующие обозначения мезонов даны в таблице:
JPC = | (0, 2…)− + | (1, 3…)+ − | (1,2…)− − | (0, 1…)+ + | |
---|---|---|---|---|---|
Кварковый состав | 2S+1LJ = * | 1(S, D, …)J | 1(P, F, …)J | 3(S, D, …)J | 3(P, F, …)J |
† | I = 1 | π | b | ρ | a |
† | I = 0 | η, η’ | h, h’ | φ, ω | f, f’ |
I = 0 | ηc | hc | ψ • | χc | |
I = 0 | ηb | hb | Υ ** | χb |
Примечания:
- * Некоторые комбинации запрещены: 0− −, 0+ −, 1− +, 2+ −, 3− +…
- † Первый ряд образует изоспиновые триплеты: π−, π0, π+ и т. д.
- † Второй ряд содержит пары частиц: φ предполагается состоянием , а ω — состоянием В других случаях точный состав неизвестен, так что используется штрих для различения двух форм.
- • По историческим причинам, 1³S1 форма ψ называется J/ψ.
- ** Символом состояния боттониум является заглавный ипсилон Υ (в зависимости от браузера может отображаться как заглавная Y).
Нормальные спин-чётные последовательности формируются мезонами, у которых P = (−1)J. В нормальной последовательности S = 1, так что PC = +1 (то есть P = C). Это соответствует некоторым триплетным состояниям (указаны в двух последних столбцах).
Поскольку некоторые из символов могут указывать на более чем одну частицу, есть дополнительные правила:
- В этой схеме частицы с JP = 0− известны как псевдоскаляры, а мезоны с JP = 1− называются векторами. Для остальных частиц число J добавляется в виде нижнего индекса: a0, a1, χc1 и т. д.
- Для большинства ψ, Υ и χ состояний обычно добавляют к обозначению спектроскопическую информацию: Υ(1S), Υ(2S). Первое число — это главное квантовое число, а буква является спектроскопическим обозначением L. Мультиплетность опускается, так как она следует из буквы, к тому же J при необходимости пишут в виде нижнего индекса: χb2(1P). Если спектроскопическая информация недоступна, то вместо неё используется масса: Υ(9460)
- Схема обозначений не различает между «чистыми» кварковыми состояниями и состояниями глюония. Поэтому глюониевые состояния используют такую же схему обозначений.
- Для экзотических мезонов с «запрещённым» набором квантовых чисел JPC = 0− −, 0+ −, 1− +, 2+ −, 3− +, … используют те же обозначения, что и для мезонов с идентичными числами PC, за исключением добавки нижнего индекса J. Мезоны с изоспином 0 и JPC = 1− + обозначаются как η1. Когда квантовые числа частицы неизвестны, она обозначается как X с указанием массы в скобках.
Мезоны с ароматом
Для мезонов с ароматом схема названий немного проще.
1. Имя дает мезону тяжелейший из двух кварков. Порядок от тяжёлого к легкому следующий: t > b > c > s > d > u. Однако у u- и d-кварков аромата нет, вследствие этого они не влияют на название. Кварк t никогда не встречается в адронах, но символ для мезонов, содержащих t, зарезервирован.
кварк | символ | кварк | символ |
---|---|---|---|
c | D | t | T |
s | b |
- Следует отметить тот факт, что с s- и b-кварками используется символ античастицы. Это происходит из-за принятого соглашения о том, что заряд аромата и электрический заряд должны иметь одинаковый знак. Это же верно и для третей компоненты изоспина: кварк u имеет положительную проекцию изоспина I3 и заряд, а кварк d имеет отрицательные I3 и заряд. В результате любой аромат заряженного мезона имеет тот же знак, что и его электрический заряд.
2. Если второй кварк тоже имеет аромат (любой, кроме u и d), то его наличие обозначается в виде нижнего индекса (s, c или b и, теоретически, t).
3. Если мезон принадлежит нормальной спин-чётной последовательности, то есть JP = 0+, 1−, 2+, …, то добавляется верхний индекс «*».
4. Для мезонов, за исключением псевдоскаляров (0−) и векторов (1−), добавляется в виде нижнего индекса квантовое число полного углового момента J.
Подводя итог, получим:
Кварковый состав | Изоспин | JP = 0−, 1+, 2−… | JP = 0+, 1−, 2+… |
---|---|---|---|
1/2 | † | ||
1/2 | |||
0 | |||
1/2 | |||
0 | |||
0 |
- † J опущен для 0− and 1−.
Иногда частицы могут смешиваться. Например, нейтральный каон и его античастица в слабых взаимодействиях, как показали в 1955 году М. Гелл-Манн и А. Пайс, ведут себя как симметричная или антисимметричная комбинации, каждой из которых соответствует своя частица: короткоживущий нейтральный каон с PC = +1, обычно распадающийся на два пиона (π0π0 или π+π−), и долгоживущий нейтральный каон с PC = -1, обычно распадающийся либо на три пиона, либо на пион, электрон (или мюон) и нейтрино[11].
Таблица некоторых мезонов
Частица | Обозначение | Античастица | Состав | Масса, МэВ/c² | S | C | B | время жизни, с |
---|---|---|---|---|---|---|---|---|
Пион | π+ | π− | 139,6 | 0 | 0 | 0 | 2,60⋅10−8 | |
π0 | 135,0 | 0 | 0 | 0 | 0,84⋅10−16 | |||
Каон | K+ | K− | 493,7 | +1 | 0 | 0 | 1,24⋅10−8 | |
497,7 | +1 | 0 | 0 | 0,89⋅10−10 | ||||
497,7 | +1 | 0 | 0 | 5,2⋅10−8 | ||||
Эта | η0 | 547,8 | 0 | 0 | 0 | 0,5⋅10−18 | ||
Ро | ρ+ | ρ− | 776 | 0 | 0 | 0 | 0,4⋅10−23 | |
Фи | φ | 1019 | 0 | 0 | 0 | 16⋅10−23 | ||
D | D+ | D− | 1869 | 0 | +1 | 0 | 10,6⋅10−13 | |
D0 | 1865 | 0 | +1 | 0 | 4,1⋅10−13 | |||
1968 | +1 | +1 | 0 | 4,9⋅10−13 | ||||
J/ψ | J/ψ | 3096,9 | 0 | 0 | 0 | 7,2⋅10−21 | ||
B | B− | B+ | 5279 | 0 | 0 | −1 | 1,7⋅10−12 | |
B0 | 5279 | 0 | 0 | −1 | 1,5⋅10−12 | |||
Ипсилон | Υ | 9460 | 0 | 0 | 0 | 1,3⋅10−20 |
См. также
Примечания
- Классификация адронов Вводные слова
- Намбу, Ёитиро. . Кварки. — М.: Мир, 1984. — 225 с. — С. 53—54, 60—63.
- The Nobel Prize in Physics 1949: Hideki Yukawa . // The Official Web Site of the Nobel Prize. Дата обращения: 23 апреля 2020.
- Бояркин, 2006, с. 57—58.
- Greiner W., Müller B. . Quantum Mechanics: Symmetries. 2nd edition. — Berlin: Springer Science & Business Media, 1994. — xviii + 526 p. — ISBN 3-540-58080-8. — P. 271.
- Бояркин, 2006, с. 70, 94—95.
- Choi S.-K. et al. . Observation of a Resonance-like Structure in the π±ψ′ Mass Distribution in Exclusive B → Kπ±ψ′ Decays // Physical Review Letters, 2008, 100. — P. 142001-1—142001-10. — doi:10.1103/PhysRevLett.100.142001.
- Aaij R. et al. . Observation of the Resonant Character of the Z(4430)- State // Physical Review Letters, 2014, 112. — P. 222002-1—222002-9. — doi:10.1103/PhysRevLett.112.222002.
- Иванов, Игорь. Новости Большого адронного коллайдера. Эксперимент LHCb окончательно доказал реальность экзотического мезона Z(4430) . // Сайт elementy.ru (15 апреля 2014). Дата обращения: 23 апреля 2020.
- Naming scheme for hadrons (англ.) ?. Particle Data Group (24 февраля 2021).
- Kaon Physics / Ed. by J. L. Rosner and B. D. Winstein. — Chicago: University of Chicago Press, 2001. — xv + 624 p. — ISBN 0-226-90228-5. — P. 3—4, 15.
Литература
- Бояркин О. М. . Введение в физику элементарных частиц. 2-е изд. — М.: КомКнига, 2006. — 264 с. — ISBN 978-5-484-00375-4.
- Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. — Cambridge University Press, 2002. — 415 p. — ISBN 9780511037276.
Ссылки
- Таблица мезонов и их свойств
- Информация о частицах от Группы по свойствам частиц http://pdg.lbl.gov
- hep-ph/0211411: Лёгкие скалярные мезоны согласно кварковой модели.
- Номенклатура адронов.