Признак сходимости

В математике Признак сходимости числового ряда —- это метод, позволяющий установить сходимость или расходимость бесконечного ряда:

Краткая запись:

Здесь последовательность вещественных или комплексных чисел; эти числа называются членами ряда.

Необходимое условие сходимости рядов

Если с ростом предел члена ряда не существует или не равен нулю, то ряд расходится[1].

Следовательно, условие необходимо (но не достаточно) для сходимости ряда. Другими словами, если это условие не выполнено, то ряд заведомо расходится, однако если оно выполнено, то нет гарантии, что ряд сходится — см., например, гармонический ряд.

Основные признаки сходимости

Ряды с неотрицательными членами

Ряды с неотрицательными членами называют также знакоположительными[2] или просто положительными[3].

Критерий сходимости знакоположительных рядов

Знакоположительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху[4].

Признак сравнения с мажорантой

Заключение о сходимости или расходимости ряда можно сделать на основании почленного сравнения его с другим рядом («мажорантой»), поведение которого уже известно[4].

Пусть даны два знакоположительных ряда: и . Если, начиная с некоторого номера (), выполняется неравенство: , то[5]:

  • из сходимости ряда следует сходимость ряда ;
  • из расходимости ряда следует расходимость и ряда.

Следствие для рядов с членами произвольного знака:

Если ряд абсолютно сходится и начиная с некоторого номера все , то и ряд сходится абсолютно.

Пример[6]. Докажем сходимость ряда обратных квадратов:

Для него рядом-мажорантой можно выбрать ряд:

Частичную сумму этого ряда можно представить в виде:

Поэтому ряд сходится, и его сумма равна 2. Следовательно, по признаку сравнения, и ряд обратных квадратов сходится к некоторому числу в интервале .

Признак Раабе

Этот признак сильнее, чем признак Даламбера и радикальный признак Коши[7].

Если для ряда существует предел:

то при ряд сходится, а при — расходится. Если , то данный признак не позволяет сделать определённый вывод о сходимости ряда[8].

Интегральный признак Коши — Маклорена

Этот признак позволяет с полной определённостью определить, сходится или расходится ряд.

Пусть функция определена при , неотрицательна, монотонно убывает и .

Тогда ряд и несобственный интеграл:

сходятся или расходятся одновременно[9].

Пример[10]. Выясним сходимость ряда для дзета-функции Римана (в вещественном случае):

Для него порождающая функция имеет вид: . Вычислим интеграл:

если , или если Вывод: данный ряд сходится при и расходится при .

Признак Гаусса

Пусть для знакоположительного ряда отношение может быть представлено в виде:

где — постоянные, а последовательность ограничена. Тогда[11]:

  • ряд сходится, если либо либо
  • ряд расходится, если либо либо

Признак Куммера

Признак Куммера— чрезвычайно общий и гибкий признак сходимости рядов с положительными членами. Фактически он представляет собой схему для конструирования конкретных признаков[12].

Пусть даны знакоположительный ряд и последовательность положительных чисел такая, что ряд расходится.

Если, начиная с некоторого номера, выполняется неравенство:

где .— положительная постоянная, то ряд сходится.

Если же, начиная с некоторого номера, то ряд расходится.

Чаще на практике применяют предельную форму признака Куммера: находим тогда в случае ряд сходится, а при — расходится.

Из признака Куммера получаются ряд других признаков:

Знакопеременные ряды

Знакопеременными называются ряды, члены которых могут быть как положительны, так и отрицательны.

Признак Даламбера

Этот признак также известен как критерий Даламбера. Он проще, чем признак Коши, однако слабее — если работает признак Даламбера, то всегда работает и признак Коши, однако существуют ряды, к которым признак Коши примени́м, а признак Даламбера не даёт результатов[13].

Если существует то:

  • если то ряд абсолютно сходится;
  • если то ряд расходится;
  • если , то данный признак не позволяет сделать определённый вывод о сходимости ряда.

Пример[14]. Исследуем сходимость ряда где Вычислим предел:

Следовательно, ряд сходится при и расходится при Случай следует разобрать отдельно; проверка показывает, что тогда члены ряда не убывают (, поэтому ) так что и в этом случае ряд расходится.

Радикальный признак Коши

Если существует то:

  • если то ряд сходится, причём абсолютно;
  • если то ряд расходится;
  • если , то данный признак не позволяет сделать определённый вывод о сходимости ряда[15].

Признак Коши сложнее, однако сильнее, чем признак Даламбера: если признак Даламбера подтверждает сходимость или расходимость ряда, то и признак Коши делает то же, однако обратное неверно[16].

Пример[17]. Исследуем ряд где — последовательность положительных чисел, причём

Согласно признаку Коши, возможны три случая.

  • Если то при ряд сходится, при — расходится, при определённый вывод сделать нельзя.
  • Если то ряд расходится.
  • Если ряд сходится.

Признак Лейбница для знакочередующихся рядов

Этот признак также называют критерий Лейбница.

Пусть для знакочередующегося ряда:

, где ,

выполняются следующие условия:

  • последовательность начиная с некоторого номера () монотонно убывает: ;

Тогда такой ряд сходится[18].

Признак Абеля

Числовой ряд сходится, если выполнены следующие условия[19]:

  • Последовательность монотонна и ограничена.
  • Ряд сходится.

Признак Дирихле

Пусть выполнены условия:

  • последовательность частичных сумм ограничена;
  • последовательность , начиная с некоторого номера, монотонно убывает: ;
  • .

Тогда ряд сходится.

Описанные выше признаки Лейбница и Абеля вытекают из признака Дирихле и поэтому слабее последнего[19].

Признак Бертрана

Если для ряда существует предел:

то при ряд сходится, а при — расходится. Если , то данный признак не позволяет сделать определённый вывод о сходимости ряда[11].

Вариации и обобщения

Хотя большинство признаков имеют дело с сходимостью бесконечных рядов, их нередко можно использовать, чтобы показать сходимость или расходимость бесконечных произведений. Этого можно добиться, используя следующую теорему:

Теорема. Пусть — последовательность положительных чисел. Тогда бесконечное произведение сходится тогда и только тогда, когда сходится ряд .

Также аналогично, если , то имеет ненулевой предел тогда и только тогда, когда ряд сходится. Это можно доказать, логарифмируя произведение[20].

Примечания

  1. Фихтенгольц, 1966, с. 293—294.
  2. Матвеева и др..
  3. Фихтенгольц, 1966, с. 262.
  4. Фихтенгольц, 1966, с. 264—266.
  5. Воробьёв, 1979, с. 51—52.
  6. Воробьёв, 1979, с. 52.
  7. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — 2-е изд. М.: Наука, 1970. — С. 137. — 720 с.
  8. Фихтенгольц, 1966, с. 273—274.
  9. Фихтенгольц, 1966, с. 282—285.
  10. Воробьёв, 1979, с. 61.
  11. Фихтенгольц, 1966, с. 279.
  12. Фихтенгольц, 1966, с. 277—279.
  13. Фихтенгольц, 1966, с. 271—272, 275.
  14. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. М.: Наука, 1985. — С. 274. — 544 с.
  15. Фихтенгольц, 1966, с. 270—271.
  16. Фихтенгольц, 1966, с. 272, 275 (примеры 3, 4).
  17. Фихтенгольц, 1966, с. 274 (пример 1).
  18. Фихтенгольц, 1966, с. 302—303.
  19. Фихтенгольц, 1966, с. 307—308.
  20. Belk. Convergence of Infinite Products (26 January 2008).

Литература

  • Воробьёв Н. Н. Теория рядов. — 4-е изд. М.: Наука, 1979. — 408 с. — (Избранные главы высшей математики для инженеров и студентов втузов).
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — Изд. 6-е. М.: Наука, 1966. — Т. 2. — 800 с.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.