Признак Дедекинда

Признак Дедекиндапризнак сходимости числовых рядов вида (в общем случае и комплексные). Установлен Юлиусом Дедекиндом.

Формулировка

Ряд сходится, если:

  • ряд абсолютно сходится;
  • при ;
  • частичные суммы ряда ограничены.

Для несобственных интегралов

Произведение ( непрерывны на и ) интегрируемо на , если:

  • ограничен на ;
  • абсолютно интегрируема на ;
  • .

Литература

  • Математическая энциклопедия, Т.2, «И. М. Виноградов. Дедекинда признак // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.»
  • Charles Swartz Introduction to gauge integrals
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.