Матрица Якоби
Матрица Яко́би отображения в точке описывает главную линейную часть произвольного отображения в точке .
Определение
Пусть задано отображение имеющее в некоторой точке все частные производные первого порядка. Матрица , составленная из частных производных этих функций в точке , называется матрицей Якоби данной системы функций.
Иными словами, матрица Якоби является производной векторной функции от векторного аргумента.
Связанные определения
- Если , то определитель матрицы Якоби называется определителем Якоби или якобиа́ном системы функций .
- Отображение называют невырожденным, если его матрица Якоби имеет максимально возможный ранг; то есть,
Свойства
- Если все непрерывно дифференцируемы в окрестности , то
- Пусть — дифференцируемые отображения, — их матрицы Якоби. Тогда матрица Якоби композиции отображений равна произведению их матриц Якоби (свойство функториальности):
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.