Ассоциированное семейство

Ассоциированное семейство (или семейство Бонне) минимальной поверхности есть однопараметрическое семейство минимальных поверхностей, которые разделяют те же данные Вейерштрасса[1]. То есть, если поверхность имеет представление

Анимация, показывающая изменение геликоида при изменении .

семейство описывается формулой

При поверхность называется сопряжённой поверхности [2].

Преобразование можно рассматривать как локальное вращение направлений главной кривизны. Нормали поверхности точки с фиксированным остаются неизменными при изменении . Сама точка движется по эллипсу.

Некоторые примеры ассоциированных семейств поверхностей: семейства катеноидов и геликоидов, семейства Шварца P, Шварца D и гироидов, а также семейства первой и второй поверхностей Шерка. Поверхность Эннепера сопряжена с собой — она остаётся неизменной при изменении .

Сопряжённые поверхности имеют свойство, что любая прямая на поверхности отражается в планарную геодезическую линии на сопряжённой поверхности и наоборот. Если кусок поверхности ограничен прямой, то сопряжённый кусов ограничен плоской линией симметрии. Это полезно при построении минимальных поверхностей путём перехода в сопряжённое пространство: ограничение плоскостями эквивалентно ограничению многоугольником[3].

Имеются аналоги ассоциированным семействам минимальных поверхностей в пространствах более высокой размерности и для многообразий[4].

Примечания

  1. О данных Вейерштрасса можно прочитать в книге Кархер Г., Саймон Л., Фудзимото Х., Хильдебрандт С., Хоффман Д. Данные Вейерштрасса // Минимальные поверхности / Под ред. Оссермана Р.. М.: ФИЗМАТЛИТ, 2003. — С. 82-85. — ISBN 5-9221-0380-6.
  2. Matthias Weber, Classical Minimal Surfaces in Euclidean Space by Examples, in Global Theory of Minimal Surfaces: Proceedings of the Clay Mathematics Institute 2001 Summer School, Mathematical Sciences Research Institute, Berkeley, California, June 25–July 27, 2001. American Mathematical Soc., 2005
  3. Hermann Karcher, Konrad Polthier, "Construction of Triply Periodic Minimal Surfaces", Phil. Trans. R. Soc. Lond. A 16 September 1996 vol. 354 no. 1715 2077–2104
  4. J.-H. Eschenburg, The Associated Family, Matematica Contemporanea, Vol 31, 1–12 2006

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.