Энергия сродства к электрону

Эне́ргия сродства́ к электро́ну, или сродство к электрону — энергия, выделяющаяся или поглощающаяся в процессе присоединения электрона к атому, молекуле или многоатомной системе.

В химии и атомной физике

Зависимость сродства к электрону атома от атомного номера элемента (экзоэнергетический эффект указан со знаком минус, эндоэнергетический эффект со знаком плюс)
Зависимость модуля энергии сродства к электрону (эВ) от атомного номера

В химии и атомной физике, под объектом, к которому будет присоединяться электрон, подразумевается свободный атом в его основном состоянии или молекула, превращающиеся при этом в отрицательный ион A:

Здесь — энергия сродства к электрону.

Так понимаемое cродство к электрону численно равно и противоположно по знаку энергии ионизации соответствующего изолированного однозарядного аниона. Оно выражается в килоджоулях на моль (кДж/моль) или в электрон-вольтах на атом (эВ/атом).

В отличие от ионизационного потенциала атома, имеющего всегда эндоэнергетическое значение, сродство атома к электрону описывается как экзоэнергетическими, так и эндоэнергетическими значениями.

Таблица 1 Энергия сродства некоторых атомов к электрону, эВ
ЭлементεЭлементεЭлементε
H0,754Na0,548K0,502
He-0,54Mg-0,4Ca-0,3
Li0,618Al0,441Sc0,14
Be-0,5Si1,385Ti-0,40
B0,277P0,747V-0,94
C1,263S2,077Cr-0,98
N-0,07Cl3,617Mn1,07
О1,461Br3,365Fe-0,58
F3,399I3,06Co-0,94
Ne0,55Ni-1,28
Cu-1,80

Сродство к электрону определяет окислительную способность частицы. Молекулы с большим сродством к электрону являются сильными окислителями. Наибольшим сродством к электрону обладают элементы 1 и 7 группы (p-элементы VII группы). Наименьшее сродство к электрону у атомов с конфигурацией s2 (Be, Mg, Zn) и s2p6 (Ne, Ar) или с наполовину заполненными p-орбиталями (N, P, As):

Таблица 2
LiBeBCNOFNe
Электронная конфигурацияs1s2s2p1s2p2s2p3s2p4s2p5s2p6
ε, эВ-0,590,19-0,30-1,270,21-1,47-3,450,22

Небольшие расхождения в цифрах между табл. 1 и табл. 2 обусловлены тем, что данные взяты из разных источников, а также погрешностью измерений.

Наибольшее значение сродства к электрону имеет гексафторид платины: 7,00±0,35 эВ[1].

В физике твёрдого тела

Сродство к электрону и важнейшие энергии в полупроводнике: потолок валентной зоны, дно зоны проводимости.
Зонная диаграмма области границы полупроводник — вакуум.

В физике твёрдого тела, в физике полупроводников и диэлектриков, под сродством к электрону понимается расстояние по энергии между краем зоны проводимости материала и минимальной энергией электрона в вакууме[2].

Это расстояние равно энергии, выделяющейся при перемещении электрона из вакуума (уровень энергии ) в среду, с попаданием данного электрона на дно зоны проводимости .

В таком случае объектом, принимающим электрон, становится не отдельный атом или молекула, а толща материала. Для энергии сродства к электрону в физике твёрдого тела используется обозначение или (от англ. electron affinity):

,

а единицей измерения выступает электрон-вольт.

Численные значения величины существенно отличаются от значений для отдельных атомов того же вещества. Например, сродство к электрону в случае кремниевого кристалла составляет 4.05 эВ, а для атома кремния 1.39 эВ/атом.

Знание величин важно для построения энергетических зонных диаграмм многослойных гетероструктур, так как от этих величин зависит разрыв зон на гетерограницах.

Наряду со сродством к электрону при изучении структур с полупроводниками используется понятие работы выхода. Последняя равна разности между уровнем вакуума и энергией Ферми вблизи поверхности рассматриваемого материала. При этом, если практически не зависит от концентрации легирующих примесей и наличия внешнего напряжения, то может варьироваться. Такое варьирование обусловлено сменой положения по отношению к краям энергетических зон , .

Примечания

  1. Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. М.: Советская энциклопедия, 1995. — Т. 4 (Пол-Три). — 639 с. — ISBN 5-82270-092-4.
  2. В. Н. Глазков. Контактные явления в полупроводниках. Построение энергетичеких диаграмм контактов полупроводников (заметки к лекциям по общей физике). MФТИ (2018). — см. стр. 5. Дата обращения: 26 сентября 2021.

Литература

  1. Ахметов Н. С. Актуальные вопросы курса неорганической химии. — М.: Просвещение, 1991. — 224 с. ISBN 5-09-002630-0
  2. Корольков Д. В. Основы неорганической химии. — М.: Просвещение, 1982. — 271 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.