Энхансер
Энхансер (англ. enhancer — усилитель, увеличитель) — небольшой участок ДНК, который после связывания с ним факторов транскрипции стимулирует транскрипцию с основных промоторов гена или группы генов. Энхансеры не обязательно находятся в непосредственной близости от генов, активность которых они регулируют, и даже не обязательно располагаются с ними на одной хромосоме. Энхансеры могут располагаться как в 5'-, так и в 3'-положении относительно матричной цепи регулируемого гена и в любой ориентации к ней. Энхансеры также могут находиться внутри интронов. Тем не менее для работы энхансера необходим его физический контакт с промотором, который осуществляется за счёт «выпетливания» ДНК между энхансером и промотором[1]. Молекулярный механизм действия энхансера заключается в том, что он благодаря собранному на нём белковому комплексу привлекает РНК-полимеразу II и кофакторы транскрипции в область промотора.
Энхансеры были впервые обнаружены в эукариотических системах[2][3], но впоследствии сходные примеры регуляции транскрипции были открыты и у прокариот[4].
Свойства энхансеров
Энхансерные участки хроматина обладают следующими свойствами[5]:
- способны стимулировать транскрипцию генов-мишеней;
- их активность не зависит от расстояния в геноме до регулируемого гена;
- содержат особые последовательности нуклеотидов, обеспечивающие связывание факторов транскрипции;
- являются местами связывания большого количества коактиваторов транскрипции и гистонацетилтрансфераз;
- высокочувствительны к действию дезоксирибонуклеазы I, так как содержат декомпактизированный хроматин;
- содержат ацетилированные гистоны.
Исходя из этих свойств, с помощью высокопроизводительных методов в геноме человека было обнаружено около миллиона потенциальных энхансеров[6][7].
Теории
На данный момент существует две теории, объясняющие механизм считывания информации с энхансера:
- Энхансеосомы — основаны на высококоординированном действии и могут быть выключены из работы единичной точечной мутацией, удаляющей или перемещающей сайты связывания белков.
- Гибкие системы — менее интегративные белки, независимо регулирующие экспрессию генов и лишь их суммарная активность влияет на транскрипцию.
Примечания
- Lee T. I., Young R. A. Transcriptional regulation and its misregulation in disease. (англ.) // Cell. — 2013. — Vol. 152, no. 6. — P. 1237—1251. — doi:10.1016/j.cell.2013.02.014. — PMID 23498934.
- Banerji J., Rusconi S., Schaffner W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. (англ.) // Cell. — 1981. — Vol. 27, no. 2 Pt 1. — P. 299—308. — PMID 6277502.
- Moreau P., Hen R., Wasylyk B., Everett R., Gaub M. P., Chambon P. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. (англ.) // Nucleic acids research. — 1981. — Vol. 9, no. 22. — P. 6047—6068. — PMID 6273820.
- Xu H., Hoover T. R. Transcriptional regulation at a distance in bacteria. (англ.) // Current opinion in microbiology. — 2001. — Vol. 4, no. 2. — P. 138—144. — PMID 11282468.
- Li W., Notani D., Rosenfeld M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. (англ.) // Nature reviews. Genetics. — 2016. — Vol. 17, no. 4. — P. 207—223. — doi:10.1038/nrg.2016.4. — PMID 26948815.
- An integrated encyclopedia of DNA elements in the human genome. (англ.) // Nature. — 2012. — Vol. 489, no. 7414. — P. 57—74. — doi:10.1038/nature11247. — PMID 22955616.
- Thurman R. E., Rynes E., Humbert R., Vierstra J., Maurano M. T., Haugen E., Sheffield N. C., Stergachis A. B., Wang H., Vernot B., Garg K., John S., Sandstrom R., Bates D., Boatman L., Canfield T. K., Diegel M., Dunn D., Ebersol A. K., Frum T., Giste E., Johnson A. K., Johnson E. M., Kutyavin T., Lajoie B., Lee B. K., Lee K., London D., Lotakis D., Neph S., Neri F., Nguyen E. D., Qu H., Reynolds A. P., Roach V., Safi A., Sanchez M. E., Sanyal A., Shafer A., Simon J. M., Song L., Vong S., Weaver M., Yan Y., Zhang Z., Zhang Z., Lenhard B., Tewari M., Dorschner M. O., Hansen R. S., Navas P. A., Stamatoyannopoulos G., Iyer V. R., Lieb J. D., Sunyaev S. R., Akey J. M., Sabo P. J., Kaul R., Furey T. S., Dekker J., Crawford G. E., Stamatoyannopoulos J. A. The accessible chromatin landscape of the human genome. (англ.) // Nature. — 2012. — Vol. 489, no. 7414. — P. 75—82. — doi:10.1038/nature11232. — PMID 22955617.
См. также
- STARR-seq — высокопроизводительный метод идентификации энхансеров в геномах.
Литература
- Wenbo Li, Dimple Notani & Michael G. Rosenfeld (2016). Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Review Genetics doi:10.1038/nrg.2016.4
- Andersson, R. et al.(2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 doi:10.1038/nature12787 PMID 24670763
- Cheng, J. H., Pan, D. Z., Tsai, Z. T. & Tsai, H. K.(2015). Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci. Rep. 5, 12648 doi:10.1038/srep12648 PMC 4518263
Ссылки
- HACNS1: Gene enhancer in evolution of human opposable thumb
- Spilianakis C. G., Lalioti M. D., Town T., Lee G. R., Flavell R. A. Interchromosomal associations between alternatively expressed loci (англ.) // Nature : journal. — 2005. — Vol. 435, no. 7042. — P. 637—645. — doi:10.1038/nature03574.
- Arnosti D. N., Kulkarni M. M. Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? (англ.) // J. Cell. Biochem. : journal. — 2005. — Vol. 94, no. 5. — P. 890—898. — doi:10.1002/jcb.20352. Архивировано 21 июля 2006 года.
- Leighton Core, André Martins, Charles Danko, Colin Waters, Adam Siepel, and John Lis. Analysis of transcription start sites from nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nature Genetics, November 2014 doi:10.1038/ng.3142