Сриниваса Рамануджан
Сринива́са Рамануджан Айенго́р (произношение ; там. ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார்; англ. Srīnivāsa Rāmānujan Iyengar; 22 декабря 1887 — 26 апреля 1920) — индийский математик.
Сриниваса Рамануджан | |
---|---|
| |
Дата рождения | 22 декабря 1887[1][2][3][…] |
Место рождения | |
Дата смерти | 26 апреля 1920[1][2][3] (32 года) |
Место смерти | |
Страна | Британская Индия |
Научная сфера | математик |
Место работы | |
Альма-матер | Кумбаконамский колледж Мадрасского университета, Кембриджский университет |
Научный руководитель |
Годфри Харди Джон Литлвуд |
Известен как |
Суммы Рамануджана Гипотеза Рамануджана Константа Ландау—Рамануджана Фальшивые тета-функции Простые числа Рамануджана Константа Рамануджана-Зольднера Тета-функции Рамануджана |
Награды и премии | |
Автограф | |
Медиафайлы на Викискладе |
Не имея специального математического образования, получил замечательные результаты в области теории чисел. Наиболее значительна его работа совместно с Годфри Харди по асимптотике числа разбиений p(n).
Биография
Рамануджан родился 22 декабря 1887 года в городе Ироду, Мадрасское президентство, на юге Индии, в тамильской семье. Отец работал бухгалтером в небольшой текстильной лавке в городе Кумбаконаме Танджорского района Мадрасского президентства. Мать была глубоко религиозна. Рамануджан воспитывался в строгих традициях замкнутой касты брахманов. В 1889 году он перенёс оспу, но сумел выжить и выздороветь.
В школе проявились его незаурядные способности к математике, и знакомый студент из города Мадраса дал ему книги по тригонометрии. В 14 лет Рамануджан открыл формулу Эйлера о синусе и косинусе и был очень расстроен, узнав, что она уже опубликована. В 16 лет в его руки попало двухтомное сочинение математика Джорджа Шубриджа Карра «Сборник элементарных результатов чистой и прикладной математики», написанное почти за четверть века до этого (впоследствии, благодаря связи с именем Рамануджана, эта книга была подвергнута тщательному анализу). В нём было помещено 6165 теорем и формул, практически без доказательств и пояснений. Юноша, не имевший ни доступа в ВУЗ, ни общения с математиками, погрузился в общение с этим сводом формул. Таким образом, у него сложился определённый способ мышления, своеобразный стиль доказательств. В этот период и определилась математическая судьба Рамануджана. Среди покровителей Рамануджана на этом поприще были его начальник сэр Фрэнсис Спринг, его коллега С. Нараяна Ийер и будущий секретарь Индийского математического общества Р. Рамачандра Рао.
В январе 1913 года Рамануджан написал письмо известному профессору Кембриджского университета Годфри Харди. В письме Рамануджан сообщал, что он не заканчивал университета, а после средней школы занимается математикой самостоятельно. К письму были приложены формулы, автор просил их опубликовать, если они интересны, поскольку сам он беден и не имеет для публикации достаточных средств. Между кембриджским профессором и индийским клерком завязалась оживлённая переписка, в результате которой у Харди накопилось около 120 формул, неизвестных науке того времени. По настоянию Харди Рамануджан приехал в Кембридж. Там он был избран в члены Английского Королевского общества (Английская академия наук) и одновременно профессором Кембриджского университета. Он был первым индийцем, удостоенным таких почестей. Печатные труды с его формулами выходили один за другим, вызывая удивление, а подчас и недоумение коллег.
В формировании математического мира Рамануджана начальный запас математических фактов объединился с огромным запасом наблюдений над конкретными числами. Он коллекционировал такие факты с детства. Он обладал поразительной способностью подмечать огромный числовой материал. По словам Харди, «каждое натуральное число было личным другом Рамануджана». Многие математики его времени считали Рамануджана просто экзотическим явлением, опередившим развитие науки, как минимум, на 100 лет. А современные математики не перестают удивляться проницательности индийского гения, перепрыгнувшего в математику нашего времени.
По семейным обстоятельствам Рамануджан вернулся в Индию, где и умер 26 апреля 1920 года. Причиной ранней (в возрасте 32 лет) смерти мог быть туберкулёз, усугублённый последствиями недоедания, истощения и стресса. В 1994 году предположили, что у Рамануджана мог быть амёбиаз.
Научные интересы и результаты
Сфера его математических интересов была очень широка. Это магические квадраты, квадратура круга, бесконечные ряды, гладкие числа, разбиения чисел, гипергеометрические функции, специальные суммы и функции, ныне носящие его имя, определённые интегралы, эллиптические и модулярные функции.
Он нашёл несколько частных решений уравнения Эйлера (см. задача о четырёх кубах), сформулировал около 120 теорем (в основном в виде исключительно сложных тождеств). Современными математиками Рамануджан считается крупнейшим знатоком цепных дробей в мире. Одним из самых замечательных результатов Рамануджана в этой области является формула, в соответствии с которой сумма простого числового ряда с цепной дробью в точности равна выражению, в котором присутствует произведение на :
Математикам хорошо известна формула вычисления числа , полученная Рамануджаном в 1910 году путём разложения арктангенса в ряд Тейлора:
Уже при суммировании первых 100 элементов () этого ряда достигается точность в шестьсот верных значащих цифр.
Примеры бесконечных сумм, найденных Рамануджаном:
- .
Эти удивительные формулы — одни из предложенных им в первом письме к Харди. Доказательства этих равенств нетривиальны.
Другие формулы Рамануджана не менее изящны:
- , где
Следующая формула действительна для 0 < a < b + 12:
Признание и оценки
Харди остроумно прокомментировал результаты, сообщённые ему Рамануджаном: «Они должны быть истинными, поскольку если бы они не были истинными, то ни у кого не хватило бы воображения, чтобы изобрести их». Его формулы иногда всплывают в современнейших разделах науки, о которых в его время никто даже не догадывался.
Сам Рамануджан говорил, что формулы являлись ему во сне и внушались в молитве (в индуизме: в мантра-йоге, медитации)[5] богиней Намагири Тхайяр (Махалакшми) (хинди नामगिरी), почитаемой в Намаккале (там. நாமக்கல்)[6][7].
Чтобы сохранить наследие этого удивительного, ни на кого не похожего математика, в 1957 году Институт фундаментальных исследований Тата издал двухтомник с фотокопиями его черновиков.
Наука ничего не выиграла от того, что Кумбаконамский колледж отверг единственного большого учёного, которого он имел, и потеря была неизмеримой. Судьба Рамануджана — худший известный мне пример вреда, который может быть причинён малоэффективной и негибкой системой образования. Требовалось так мало, всего 60 фунтов стерлингов в год на протяжении 5 лет и эпизодического общения с людьми, имеющими настоящие знания и немного воображения, и мир получил бы ещё одного из величайших своих математиков…
— Г. Х. Харди
Понятия, связанные с именем Рамануджана
Именем Рамануджана названы математические объекты и утверждения, учебные учреждения, журналы и премии. В частности:
- Гипотеза Рамануджана
- Суммы Рамануджана
- Функция Рамануджана
- Константа Ландау—Рамануджана
- Число Рамануджана — Харди
- Тождество Роджерса — Рамануджана
- Теорема Харди — Рамануджана
- Тождество Доугалла — Рамануджана
- Граф Рамануджана
- Премия SASTRA Ramanujan
В кинематографе
Математик-самоучка Рамануджан — главный герой следующих художественных фильмов:
- «Рамануджан» (2014) производства Индии;
- «Человек, который познал бесконечность» (2015) производства Великобритании, по одноимённой биографии Роберта Канигела.
- Амита Рамануджан, героиня сериала «4исла», названная в честь математика.
- «Умница Уилл Хантинг» (1997) производства США. Упоминается в диалоге профессора математики Джеральда Лембо и психолога Шона.
Примечания
- Архив по истории математики Мактьютор
- Srinivasa Ramanujan // Энциклопедия Брокгауз (нем.)
- Srinivasa Rāmānujan // Gran Enciclopèdia Catalana (кат.) — Grup Enciclopèdia Catalana, 1968.
- Srinivasa Ramanujan Biography // biography.com
- Цитата из фильма «Человек, который познал бесконечность» (англ. The Man Who Knew Infinity) на временной шкале фильма: 1 час 25 минут.
- Харди Г. Двенадцать лекций о Рамануджане. — М.: Институт компьютерных исследований, 2002. — 336 с.
- Гиндикин С. Г. Загадка Рамануджана // Квант. — 1987. — № 10. — С. 20.
Литература
- The Man Who Knew Infinity: A Life of the Genius Ramanujan, 1991, Robert Kanigel
- Гиндикин С. Г. Рассказы о физиках и математиках. — Издание третье, расширенное. — М.: МЦНМО, 2001. — ISBN 5-900916-83-9.
- Харди Г. Двенадцать лекций о Рамануджане. — М.: Институт компьютерных исследований, 2002. — 336 с.
- Гиндикин С. Г. Загадка Рамануджана // Квант. — 1987. — № 10. — С. 14.
- Аски Р. С. Рамануджан. Гипергеометрические и базисные гипергеометрические ряды // УМН. — 1990. — Т. 45, № 1(271). — С. 33—76.
- Борвейн Дж., Борвейн П. Рамануджан и число π // В мире науки. — 1988. — № 4.
- Левин В. И. Рамануджан — математический гений Индии. — М.: Знание, 1968. (альтернативная ссылка)
- Левин В. И. Жизнь и творчество индийского математика С. Рамануджана // Историко-математические исследования. — М.: Физматгиз, 1960. — Т. XIII.
- Литлвуд Дж. И. Рецензия на собрание сочинений Рамануджана // Математическая смесь. — М.: Наука, 1990. — ISBN 5-02-014332-4.
- Список литературы о Рамануджане в рунете
- George E. Andrews, Bruce C. Berndt Ramanujan’s Lost Notebook: Part I, II, III, IV ISBN 0-387-25529-X, 2008, ISBN 978-0-387-77765-8, 2012, ISBN 978-1-4614-3809-0, 2013, ISBN 978-1-4614-4080-2)