Суммы Рамануджана
Суммы Рамануджана — это тригонометрические суммы, зависящие от двух целочисленных параметров и , вида:
где и .
Основным свойством сумм Рамануджана является их мультипликативность относительно индекса , то есть
если .
Суммы можно представить через функцию Мёбиуса :
Суммы Рамануджана ограничены при ограниченных либо , либо . Так, например, .
Применение сумм Рамануджана
Многие мультипликативные функции от натурального аргумента могут быть разложены в ряды по . Верно и обратное.
Основные свойства сумм позволяют вычислять суммы вида:
где — мультипликативная функция, — целое число, — в общем случае, комплексное.
В простейшем случае, можно получить
где — дзета-функция Римана, — сумма -х степеней делителей числа .
Такие суммы тесно связаны с особыми рядами некоторых аддитивных проблем теории чисел, например, представление натуральных чисел в виде чётного числа квадратов. В работе [1] приведены многие формулы, содержащие данные суммы.
Литература
- Ramanujan S. Transactions of the Cambridge Philosophical Society. — 1918. — v. 22. — p. 259—276.
- Hardy G. H. Proceedings of the Cambridge Philosophical Society. — 1920/21. — v. 20. — p. 263—271.
- Ramanujan S. Collected papers. — Cambridge, 1927. — p. 137—141.
- Volkmann В. Journal für die reine und angewandte Mathematik. — 1974. — Bd 271. — S. 203—213.
- Tитчмapш, E. К. Теория дзета-функции Римана. — Череповец: Меркурий-Пресс, 2000. — 407 с. — ISBN 5114800906..
- Левин В. И. Историко-математические исследования. — т. 13. — М.: ВИНИТИ, 1960.