СГС

СГС (сантиметр-грамм-секунда) — система единиц измерения, в которой основными единицами являются единица длины сантиметр, единица массы грамм и единица времени секунда. Она широко использовалась до принятия Международной системы единиц (СИ). Другое название — абсолютная физическая система единиц[К 1].

В рамках СГС существуют три независимые размерности — длина (сантиметр), масса (грамм) и время (секунда) — все остальные сводятся к ним путём умножения, деления и возведения в степень (возможно, дробную). Кроме трёх основных единиц измерения, в СГС существует ряд дополнительных единиц измерения, которые являются производными от основных.

Некоторые физические константы получаются безразмерными.

Есть несколько вариантов СГС, отличающихся выбором электрических и магнитных единиц измерения и величиной констант в различных законах электромагнетизма (СГСЭ, СГСМ, Гауссова система единиц).

СГС отличается от СИ не только выбором конкретных единиц измерения. Из-за того, что в СИ были дополнительно введены основные единицы для электромагнитных физических величин, которых не было в СГС, некоторые единицы имеют другие размерности. Из-за этого некоторые физические законы в этих системах записываются по-разному (например, закон Кулона). Отличие заключается в коэффициентах, большинство из которых — размерные. Поэтому если в формулы электромагнетизма, записанные в СГС, просто подставить единицы измерения СИ, то будут получены неправильные результаты. Это же относится и к разным разновидностям СГС — в СГСЭ, СГСМ и гауссовой системе единиц одни и те же формулы могут записываться по-разному. В то же время формулы механики, не связанные с электромагнетизмом, записываются в СИ и всех разновидностях СГС одинаково.

В формулах СГС отсутствуют нефизические коэффициенты, необходимые в СИ (например, электрическая постоянная в законе Кулона), и, в гауссовой разновидности, все четыре вектора электрических и магнитных полей E, D, B и H имеют одинаковые размерности, в соответствии с их физическим смыслом, поэтому СГС считается более удобной для теоретических исследований[К 2].

В научных работах, как правило, выбор той или иной системы определяется более преемственностью обозначений и прозрачностью физического смысла, чем удобством измерений.

Некоторые единицы измерения

Расширения СГС и универсальная форма уравнений электродинамики

Для облегчения работы в СГС в электродинамике были приняты дополнительно системы СГСЭ (абсолютная электростатическая система) и СГСМ (абсолютная электромагнитная система), а также гауссова. В каждой из этих систем электромагнитные законы записываются по-разному (с разными коэффициентами пропорциональности).

Закон Кулона:

Сила Ампера:

При этом обязательно[4]

Сила Лоренца:

Вектор магнитной индукции:

При этом обязательно[4]

Закон Фарадея:

Уравнения Максвелла[4]:

В среде:

При этом и обычно выбираются равными

Система
СИ[4]Гн/м[К 3]11
Электромагнитная[4] СГС
(СГСМ, или аб-)
c21111/c21
Электростатическая[4] СГС
(СГСЭ, или стат-)
11/c21/c2111/c2
Гауссова[4] СГС11/c21/c1/c11
Лоренца — Хевисайда[4] СГС1/4π1/4πc21/4πc1/c1111

СГСМ

В СГСМ магнитная постоянная µ0 безразмерна и равна 1, а электрическая постоянная ε0 = 1/с2 (размерность: с2/см2). В этой системе нефизические коэффициенты отсутствуют в формуле закона Ампера для силы, действующей на единицу длины l каждого из двух бесконечно длинных параллельных прямолинейных токов в вакууме: F = 2I1I2l/d, где d — расстояние между токами. В результате единица силы тока должна быть выбрана как квадратный корень из единицы силы (дина1/2). Из выбранной таким образом единицы силы тока (иногда называемой абампером, размерность: см1/2г1/2с−1) выводятся определения производных единиц (заряда, напряжения, сопротивления и т. п.).

Все величины этой системы отличаются от единиц СИ в 10 в целой степени раз, за исключением напряженности магнитного поля: 1 А/м = 4π·10−3 Э.

СГСЭ

В СГСЭ электрическая постоянная ε0 безразмерна и равна 1, магнитная постоянная µ0 = 1/с2 (размерность: с2/см2), где c — скорость света в вакууме, фундаментальная физическая постоянная. В этой системе закон Кулона в вакууме записывается без дополнительных коэффициентов: F = Q1Q2/r2, в результате единица заряда должна быть выбрана как квадратный корень из единицы силы (дина1/2), умноженный на единицу расстояния (сантиметр). Из выбранной таким образом единицы заряда (называемой статкулоном, размерность: см3/2г1/2с−1) выводятся определения производных единиц (напряжения, силы тока, сопротивления и т. п.).

Все величины этой системы отличаются от единиц СГСМ в c в целой степени раз.

Симметричная СГС, или гауссова система единиц

В симметричной СГС (называемой также смешанной СГС или гауссовой системой единиц) магнитные единицы (магнитная индукция, магнитный поток, магнитный дипольный момент, напряженность магнитного поля) равны единицам системы СГСМ, электрические (включая индуктивность) — единицам системы СГСЭ. Магнитная и электрическая постоянные в этой системе единичные и безразмерные: µ0 = 1, ε0 = 1.

Электромагнитные величины в различных системах СГС

Приведённые ниже множители для преобразования единиц основываются на точных значениях электрической и магнитной постоянных в СИ, действовавших до изменений СИ 2018—2019 годов. В редакции СИ, действующей с 2019 года, электрическая и магнитная постоянная практически сохранили своё численное значение, но стали экспериментально определяемыми величинами, известными с определённой погрешностью (в девятом знаке после запятой). Вместе с электрической и магнитной постоянными погрешность приобрели и множители для преобразования единиц между СИ и вариантами СГС[6].

Преобразование единиц СГСЭ, СГСМ и гауссовой подсистемы СГС в СИ[5]
c = 299 792 458 00 ≈ 3·1010 — числовое значение скорости света в вакууме в сантиметрах в секунду
Величина СимволЕдиница СИЕдиница СГСМЕдиница СГСЭГауссова единица
электрический заряд / электрический поток q / ΦE1 Кл↔ (10−1) абКл↔ (10−1 c) Фр↔ (10−1 c) Фр
электрический ток I1 A↔ (10−1) абА↔ (10−1 c) статА↔ (10−1 c) Фр·с−1
электрический потенциал / напряжение φ / V1 В↔ (108) абВ↔ (108 c−1) статВ↔ (108 c−1) статВ
напряжённость электрического поля E1 В/м=Н/Кл↔ (106) абВ/см↔ (106 c−1) статВ/см=дин/статКл↔ (106 c−1) статВ/см
электрическая индукция D1 Кл/м²↔ (10−5) абКл/см²↔ (10−5 c) Фр/см²↔ (10−5 c) Фр/см²
электрический дипольный момент p1 Кл·м↔ (10) абКл·см↔ (10 c) Фр·см↔ (10 c) Фр·см
магнитный дипольный момент μ1 А·м²↔ (103) абА·см²↔ (103 c) статА·см²↔ (103) эрг/Гс
магнитная индукция B1 Тл=Вб/м²↔ (104) Мкс/см²=Гс↔ (104 c−1) статТл=статВб/см²↔ (104) Гс
напряжённость
магнитного поля
H1 А/м=Н/Вб↔ (4π 10−3) абА/см=Э↔ (4π 10−3 c) статА/см↔ (4π 10−3) Э=дин/Мкс
магнитный поток Φm1 Вб=Тл·м²↔ (108) Мкс↔ (108 c−1) статВб=статТл·см²↔ (108) Гс·см²=Мкс
сопротивление R1 Ом↔ (109) абОм↔ (109 c−2) с/см↔ (109 c−2) с/см
ёмкость C1 Ф↔ (10−9) абФ↔ (10−9 c2) см↔ (10−9 c2) см
индуктивность L1 Гн↔ (109) абГн↔ (109 c−2) см−1·с2↔ (109 c−2) см−1·с2

Понимать это следует так: 1 A = (10−1) абА, и т. д.

История

Система мер, основанная на сантиметре, грамме и секунде, была предложена немецким ученым Гауссом в 1832 году. В 1874 году Максвелл и Томсон усовершенствовали систему, добавив в неё электромагнитные единицы измерения.

Величины многих единиц системы СГС были признаны неудобными для практического использования, и вскоре она была заменена системой, основанной на метре, килограмме и секунде (МКС). СГС продолжали использовать параллельно с МКС, в основном в научных исследованиях.

После принятия в 1960 году системы СИ СГС почти вышла из употребления в инженерных приложениях, однако продолжает широко использоваться, например, в теоретической физике и астрофизике из-за более простого вида законов электромагнетизма.

Из трёх дополнительных систем наибольшее распространение получила симметричная СГС.

См. также

Литература

  • Абсолютные системы единиц // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. М.: Сов. энциклопедия, 1969(70). — Т. I. — С. 35. — 608 с.

Примечания

Комментарии
  1. В настоящее время термин «абсолютная» в качестве характеристики систем единиц не употребляется и считается устаревшим[1][2].
  2. По мнению Д. В. Сивухина «в этом отношении система СИ не более логична, чем, скажем, система, в которой длина, ширина и высота предмета измеряются не только различными единицами, но и имеют разные размерности»[3].
  3. После изменений СИ 2018—2019 года это не точное, а приближённое значение.
Источники
  1. Чертов А. Г. Единицы физических величин. М.: «Высшая школа», 1977. — С. 19. — 287 с.
  2. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. М.: Издательство стандартов, 1990. — С. 19. — 240 с. — ISBN 5-7050-0118-5.
  3. Сивухин Д. В. О международной системе физических величин // Успехи физических наук. — М.:: Наука, 1979. Т. 129, № 2. С. 335—338.
  4. Jackson, John David. Classical Electrodynamics (англ.). — 3rd. — New York: Wiley, 1999. — P. 775—784. — ISBN 0-471-30932-X.
  5. Cardarelli F. Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins (англ.). — 2nd. — Springer, 2004. — P. 20—25. — ISBN 1-85233-682-X.
  6. Ronald B. Goldfarb. Electromagnetic Units, the Giorgi System, and the Revised International System of Units // IEEE Magnetics Letters. — 2018. — Vol. 9. — P. 1—5. doi:10.1109/LMAG.2018.2868654.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.