Электрическая ёмкость
Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками[1].
Электрическая ёмкость | |
---|---|
Размерность | L-2M-1T4I2 |
Единицы измерения | |
СИ | фарад |
СГС | сантиметр |
В Международной системе единиц (СИ) ёмкость измеряется в фарадах, в системе СГС — в сантиметрах.
Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид
где — заряд, — потенциал проводника.
Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ):
где ε0 — электрическая постоянная, равная 8,854⋅10−12 Ф/м, εr — относительная диэлектрическая проницаемость.
Вывод формулы Известно, что Так как , то подставив сюда найденный , получим, что |
Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком или вакуумом, — к конденсатору. В этом случае ёмкость (взаимная ёмкость) этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:
где S — площадь одной обкладки (подразумевается, что обкладки одинаковы), d — расстояние между обкладками, εr — относительная диэлектрическая проницаемость среды между обкладками.
Электрическая ёмкость некоторых систем
Вычисление электрической ёмкости системы требует решение Уравнения Лапласа ∇2φ = 0 с постоянным потенциалом φ на поверхности проводников. Это тривиально в случаях с высокой симметрией. Нет никакого решения в терминах элементарных функций в более сложных случаях.
В квазидвумерных случаях аналитические функции отображают одну ситуацию на другую, электрическая ёмкость не изменяется при таких отображениях. См. также Отображение Шварца — Кристоффеля.
Вид | Ёмкость | Комментарий |
---|---|---|
Плоский конденсатор | S: Площадь d: Расстояние | |
Два коаксиальных цилиндра | l: Длина R1: Радиус R2: Радиус | |
Две параллельные проволоки[2] | a: Радиус d: Расстояние, d > 2a | |
Проволока параллельна стене[2] | a: Радиус d: Расстояние, d > a l: Длина | |
Две параллельные копланарные полосы[3] |
d: Расстояние w1, w2: Ширина полос km: d/(2wm+d) k2: k1k2 | |
Два концентрических шара | R1: Радиус R2: Радиус | |
Два шара одинакового радиуса[4][5] | a: Радиус d: Расстояние, d > 2a D = d/2a γ: Постоянная Эйлера | |
Шар вблизи стены[4] | a: Радиус d: Расстояние, d > a D = d/a | |
Шар | a: Радиус | |
Круглый диск[6] | a: Радиус | |
Тонкая прямая проволока, ограниченная длина[7][8][9] |
a: Радиус проволоки l: Длина Λ: ln(l/a) |
Эластанс
Величина обратная ёмкости называется эластанс (эластичность). Единицей эластичности является дараф (daraf), но он не определён в системе физических единиц измерений СИ[10].
См. также
Примечания
- Шакирзянов Ф. Н. Ёмкость электрическая // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 28—29. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- Jackson, J. D. Classical Electrodynamics (неопр.). — Wiley, 1975. — С. 80.
- Binns; Lawrenson. Analysis and computation of electric and magnetic field problems (англ.). — Pergamon Press, 1973. — ISBN 978-0-08-016638-4.
- Maxwell, J. C. A Treatise on Electricity and Magnetism (неопр.). — Dover, 1873. — С. 266 ff. — ISBN 0-486-60637-6.
- Rawlins, A. D. Note on the Capacitance of Two Closely Separated Spheres (англ.) // IMA Journal of Applied Mathematics : journal. — 1985. — Vol. 34, no. 1. — P. 119—120. — doi:10.1093/imamat/34.1.119.
- Jackson, J. D. Classical Electrodynamics (неопр.). — Wiley, 1975. — С. 128, problem 3.3.
- Maxwell, J. C. On the electrical capacity of a long narrow cylinder and of a disk of sensible thickness (англ.) // Proc. London Math. Soc. : journal. — 1878. — Vol. IX. — P. 94—101. — doi:10.1112/plms/s1-9.1.94.
- Vainshtein, L. A. Static boundary problems for a hollow cylinder of finite length. III Approximate formulas (англ.) // Zh. Tekh. Fiz. : journal. — 1962. — Vol. 32. — P. 1165—1173.
- Jackson, J. D. Charge density on thin straight wire, revisited (неопр.) // Am. J. Phys. — 2000. — Т. 68, № 9. — С. 789—799. — doi:10.1119/1.1302908. — .
- Тензорный анализ сетей, 1978, с. 509.
Литература
- Боргман И. И.,. Электроёмкость // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Савельев И.В. Глава X. Движение заряженных частиц. // Курс общей физики. — 3. — М.: Наука. Гл. ред. физ.-мат. лит., 1988. — Т. 2. — С. 87—88. — 496 с. — 220 000 экз.
- Г. Крон. Тензорный анализ сетей. — Москва: Сов. радио, 1978. — 720 с.