Преобразование Меллина

Преобразование Меллинапреобразование, которое можно рассматривать как мультипликативную версию двустороннего преобразования Лапласа. Это интегральное преобразование тесно связано с теорией рядов Дирихле и часто используется в теории чисел и в теории асимптотических разложений. Преобразование Меллина тесно связано с преобразованием Лапласа и преобразованием Фурье, а также теорией гамма-функций и теорией смежных специальных функций.

Преобразование названо по имени исследовавшего его финского математика Ялмара Меллина.

Определение

Прямое преобразование Меллина задаётся формулой:

.

Обратное преобразование — формулой:

.

Предполагается, что интегрирование происходит в комплексной плоскости. Условия, при которых можно делать преобразование, совпадают с условиями теоремы обратного преобразования Меллина.

Связь с другими преобразованиями

Двусторонний интеграл Лапласа может быть выражен через преобразование Меллина:

.

И наоборот: преобразование Меллина выражается через преобразование Лапласа формулой:

Преобразование Фурье может быть выражено через преобразование Меллина формулой:

.

Обратно:

.

Преобразование Меллина также связывает интерполяционные формулы Ньютона или биномиальные преобразования с производящей функцией последовательности с помощью цикла Пуассона — Меллина — Ньютона.

Примеры

Интеграл Каэна — Меллина

Если:

  • на главной ветви,

то[1]

,
где
гамма-функция.

Назван по именам Ялмара Меллина и французского математика Эжена Каэна (фр. Eugène Cahen).

Преобразование Меллина для лебегова пространства

В гильбертовом пространстве преобразование Меллина задаётся несколько иначе. Для лебегова пространства любая фундаментальная полоса включает в себя . В связи с этим возможно задать линейный оператор как:

.

То есть:

.

Обычно этот оператор обозначается и называется преобразованием Меллина, но здесь и в дальнейшем мы будем использовать обозначение .

теоремы обратного преобразования Меллина показывает, что

Кроме того, этот оператор изометричен, то есть

для .

Это объясняет коэффициент

Связь с теорией вероятностей

В теории вероятностей преобразование Меллина является важным инструментом для изучения распределения случайных величин[2].

Если:

  • — случайная величина,

то преобразование Меллина определяется как:

где мнимая единица.

Преобразование Меллина случайной величины однозначно определяет её функцию распределения .

Применение

Преобразование Меллина особенно важно для информационных технологий, особенно для распознавания образов.

Примечания

  1. Hardy, G. H.; Littlewood, J. E. Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes (англ.) // Acta Mathematica : journal. — 1916. Vol. 41, no. 1. P. 119—196. doi:10.1007/BF02422942. (See notes therein for further references to Cahen’s and Mellin’s work, including Cahen’s thesis.)
  2. Galambos, Simonelli, 2004, стр. 15

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.