Потенциал Пёшль — Теллера

Потенциал Пёшль — Теллера — функция потенциальной энергии электростатического поля, предложенная венгерскими физиками Гертой Пёшль и Эдвардом Теллером[1] как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе. Потенциал имеет вид

на промежутке , на границе которого он обращается в бесконечность. Параметры удовлетворяют условиям и . Иногда потенциалом Пёшль — Теллера называют модифицированный потенциал Пёшль — Теллера.

График потенциала Пёшль — Теллера с фиксированным параметром и различными значениями

Уравнение Шрёдингера с потенциалом Пёшль — Теллера

Стационарное уравнение Шрёдингера с потенциалом Пёшль — Теллера имеет вид:

Если ввести обозначение , то оно примет вид:

После замены переменных

получим

Так как точки 0 и 1 являются особыми, то естественно представить решение в виде:

Если выбрать

то уравнение приведётся к гипергеометрическому виду:

Общее решение данного уравнения может быть выражено через гипергеометрические функции:

где введены обозначения:

Если учесть граничные условия:

то получим собственные функции

где константа вычисляется с учётом нормировки:

Соответствующие уровни энергии равны:

Примечания

  1. G. Pöschl, E. Teller. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators (нем.) // Zeitschrift für Physik. — 1933. Bd. 83, Nr. 3-4. S. 143–151. doi:10.1007/BF01331132.

Литература

  • З. Флюгге. Задачи по квантовой механике. — Издательство ЛКИ, 2008. — Т. 1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.