Изотопы гадолиния

Изотопы гадолиния — разновидности химического элемента гадолиния с разным количеством нейтронов в ядре. Известны 48 изотопов гадолиния с массовыми числами от 133 до 170 (количество протонов 64, нейтронов от 69 до 106) и более дюжины ядерных изомеров.

Природный гадолиний представляет собой смесь семи изотопов.[1] Из них шесть стабильны:

  • 154Gd (изотопная распространённость 2,18 ± 0,02 %).
  • 155Gd (изотопная распространённость 14,80 ± 0,09 %).
  • 156Gd (изотопная распространённость 20,47 ± 0,03 %).
  • 157Gd (изотопная распространённость 15,65 ± 0,04 %).
  • 158Gd (изотопная распространённость 24,84 ± 0,08 %).
  • 160Gd (изотопная распространённость 21,86 ± 0,03 %).

И одного с огромным периодом полураспада, много больше возраста Вселенной:

  • 152Gd (изотопная распространённость 0,20 ± 0,03 %; период полураспада 1,08⋅1014 лет; альфа-распад).

Благодаря радиоактивности 152Gd природный гадолиний обладает незначительной удельной активностью около 1,5 Бк/кг.[2]

Теоретически 160Gd также может оказаться нестабилен, однако эксперименты не обнаружили его распадов для оценочного периода полураспада ниже 1021 лет.[3]

Гадолиний-155 и гадолиний-157

Изотопы 155Gd и 157Gd имеют огромные сечения захвата тепловых нейтронов:[4]

Благодаря этим изотопам природный гадолиний также обладает высоким сечением захвата тепловых нейтронов порядка 49 тыс. барн.

Оба изотопа входят в продукты распада тяжелых ядер урана и плутония (для урана-235 выход 155Gd 10−5, 157Gd 7*10−5)[4] Поэтому эти изотопы являются значимыми нейтронными ядами, усложняющими управление ядерным реактором.

Также определенное распространение эти изотопы получили в топливе современных ядерных реакторов в качестве экранирующих выгорающих поглотителей, призванных продлить топливную кампанию реактора.

Гадолиний-153

153Gd имеет период полураспада 240 дней и испускает гамма-излучение с пиками на 41 и 102 кэВ. Используется в медицине для диагностики остеопороза, блокады клеток Купфера при лечении печени.

Таблица изотопов гадолиния

Символ
нуклида
Z(p) N(n) Масса изотопа[5]
(а. е. м.)
Период
полураспада
[6]
(T1/2)
Канал распада Продукт распада Спин и чётность
ядра[6]
Распространённость
изотопа в природе
Диапазон изменения изотопной распространённости в природе
Энергия возбуждения
134Gd 64 70 133,95537(43)# 0,4# с 0+
135Gd 64 71 134,95257(54)# 1,1(2) с 3/2−
136Gd 64 72 135,94734(43)# 1# с [>200 нс] β+ 136Eu
137Gd 64 73 136,94502(43)# 2,2(2) с β+ 137Eu 7/2+#
β+, p (редко) 136Sm
138Gd 64 74 137,94012(21)# 4,7(9) с β+ 138Eu 0+
138mGd 2232,7(11) кэВ 6(1) мкс (8−)
139Gd 64 75 138,93824(21)# 5,7(3) с β+ 139Eu 9/2−#
β+, p (редко) 138Sm
139mGd 250(150)# кэВ 4,8(9) с 1/2+#
140Gd 64 76 139,93367(3) 15,8(4) с β+ 140Eu 0+
141Gd 64 77 140,932126(21) 14(4) с β+ (99,97%) 141Eu (1/2+)
β+, p (0,03%) 140Sm
141mGd 377,8(2) кэВ 24,5(5) с β+ (89%) 141Eu (11/2−)
ИП (11%) 141Gd
142Gd 64 78 141,92812(3) 70,2(6) с β+ 142Eu 0+
143Gd 64 79 142,92675(22) 39(2) с β+ 143Eu (1/2)+
β+, α (редко) 139Pm
β+, p (редко) 142Sm
143mGd 152,6(5) кэВ 110,0(14) с β+ 143Eu (11/2−)
β+, α (редко) 139Pm
β+, p (редко) 142Sm
144Gd 64 80 143,92296(3) 4,47(6) мин β+ 144Eu 0+
145Gd 64 81 144,921709(20) 23,0(4) мин β+ 145Eu 1/2+
145mGd 749,1(2) кэВ 85(3) с ИП (94,3%) 145Gd 11/2−
β+ (5,7%) 145Eu
146Gd 64 82 145,918311(5) 48,27(10) сут ЭЗ 146Eu 0+
147Gd 64 83 146,919094(3) 38,06(12) ч β+ 147Eu 7/2−
147mGd 8587,8(4) кэВ 510(20) нс (49/2+)
148Gd 64 84 147,918115(3) 71,3(10) года α 144Sm 0+
β+β+ (редко) 148Sm
149Gd 64 85 148,919341(4) 9,28(10) сут β+ 149Eu 7/2−
α (4,34⋅10−4%) 145Sm
150Gd 64 86 149,918659(7) 1,79(8)⋅106 лет α 146Sm 0+
β+β+ (редко) 150Sm
151Gd 64 87 150,920348(4) 124(1) сут ЭЗ 151Eu 7/2−
α (10−6%) 147Sm
152Gd 64 88 151,9197910(27) 1,08(8)⋅1014 лет α 148Sm 0+ 0,0020(1)
153Gd 64 89 152,9217495(27) 240,4(10) сут ЭЗ 153Eu 3/2−
153m1Gd 95,1737(12) кэВ 3,5(4) мкс (9/2+)
153m2Gd 171,189(5) кэВ 76,0(14) мкс (11/2−)
154Gd 64 90 153,9208656(27) стабилен 0+ 0,0218(3)
155Gd 64 91 154,9226220(27) стабилен 3/2− 0,1480(12)
155mGd 121,05(19) кэВ 31,97(27) мс ИП 155Gd 11/2−
156Gd 64 92 155,9221227(27) стабилен 0+ 0,2047(9)
156mGd 2137,60(5) кэВ 1,3(1) мкс 7-
157Gd 64 93 156,9239601(27) стабилен 3/2− 0,1565(2)
158Gd 64 94 157,9241039(27) стабилен 0+ 0,2484(7)
159Gd 64 95 158,9263887(27) 18,479(4) ч β 159Tb 3/2−
160Gd 64 96 159,9270541(27) стабилен (>3,1⋅1019 лет)[прим. 1] 0+ 0,2186(19)
161Gd 64 97 160,9296692(29) 3,646(3) мин β 161Tb 5/2−
162Gd 64 98 161,930985(5) 8,4(2) мин β 162Tb 0+
163Gd 64 99 162,93399(32)# 68(3) с β 163Tb 7/2+#
164Gd 64 100 163,93586(43)# 45(3) с β 164Tb 0+
165Gd 64 101 164,93938(54)# 10,3(16) с β 165Tb 1/2−#
166Gd 64 102 165,94160(64)# 4,8(10) с β 166Tb 0+
167Gd 64 103 166,94557(64)# 3# с β 167Tb 5/2−#
168Gd 64 104 167,94836(75)# 300# мс β 168Tb 0+
169Gd 64 105 168,95287(86)# 1# с β 169Tb 7/2−#
  1. Теоретически может претерпевать двойной бета-распад в 160Dy.

Пояснения к таблице

  • Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.
  • Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида.
  • Символами, выделенными жирным шрифтом, обозначены стабильные продукты распада. Символами, выделенными жирным курсивом, обозначены радиоактивные продукты распада, имеющие периоды полураспада, сравнимые с возрастом Земли или превосходящие его и вследствие этого присутствующие в природной смеси.
  • Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или чётности заключены в скобки.
  • Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 ± 0,5; 21,48(15) означает 21,48 ± 0,15; −2200,2(18) означает −2200,2 ± 1,8.

Примечания

  1. Meija J. et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2016. Vol. 88, no. 3. P. 293—306. doi:10.1515/pac-2015-0503.
  2. Оценка радиологической значимости редкоземельных металлов, имеющих природные радиоактивные изотопы. Э. П. Лисаченко. Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П. В. Рамзаева, Санкт-Петербург
  3. F. A. Danevich et al. Quest for double beta decay of 160Gd and Ce isotopes (англ.) // Nuclear Physics A : journal. — 2001. Vol. 694, no. 1—2. P. 375—391. doi:10.1016/S0375-9474(01)00983-6. — . arXiv:nucl-ex/0011020.
  4. 64. ГАДОЛИНИЙ
  5. Данные приведены по Wang M., Audi G., Kondev F. G., Huang W. J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures (англ.) // Chinese Physics C. — 2016. Vol. 41, iss. 3. P. 030002-1—030002-344. doi:10.1088/1674-1137/41/3/030002.
  6. Данные приведены по Kondev F. G., Wang M., Huang W. J., Naimi S., Audi G. The Nubase2020 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2021. Vol. 45, iss. 3. P. 030001-1—030001-180. doi:10.1088/1674-1137/abddae.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.