Изотопы фосфора

Изотопы фосфора— разновидности атомовядер) химического элемента фосфора, имеющие разное содержание нейтронов в ядре.

Единственным стабильным изотопом является 31P. Таким образом, природный фосфор является практически изотопно-чистым элементом.

Фосфор-32

Бета-эмиттер с энергией 1,7 МЭв. Период полураспада ~14 дней (падение активности ~5 % в сутки) по схеме 32P → 32S + e. Нашел применение в медицине для диагностических и лечебных целей, изучения закономерностей обмена веществ.

Может получаться из природного изотопа серы-32 облучением нейтронами по схеме[1] 32S (n, p) → 32P. Либо облучением нейтронами природного фосфора 31P с захватом нейтрона.

В настоящее время (2017 год) в России синтез изотопа и получение химических препаратов на его основе ведется в Томском политехническом университете.[2]

Фосфор-33

Бета-эмиттер с энергией 0,25 МЭв. Период полураспада ~25 дней по схеме 33P → 33S + e. Может применяться для тех же диагностических целей что и фосфор-32. Однако этот изотоп гораздо дороже в связи с синтезом из серы-33, содержание которой в природной сере всего 0,75%. Соответственно, появляется дорогостоящий этап разделения изотопов и обогащения мишени по сере-33.[1]

Таблица изотопов фосфора

Символ
нуклида
Историческое название Z(p) N(n) Масса изотопа[3]
(а. е. м.)
Период
полураспада
[4]
(T1/2)
Канал распада Продукт распада Спин и чётность
ядра[4]
Распространённость
изотопа в природе
Энергия возбуждения
25P 15 10 25,02119(43)# <30 нс p 24Si (1/2+)#
26P 15 11 26,01178(21)# 43,7(6) мс β+ (63,2%) 26Si (3+)
β+, p (36,8%) 25Al
26mP 164,4(1) кэВ 120(9) нс ИП 26P
27P 15 12 26,999224(28) 260(80) мс β+ (99,93%) 27Si 1/2+
β+, p (0,07%) 26Al
28P 15 13 27,9923266(12) 270,3(5) мс β+ (99,99%) 28Si 3+
β+, p (0,0013%) 27Al
β+, α (8,6⋅10−4%) 24Mg
29P 15 14 28,9818004(4) 4,142(15) с β+ 29Si 1/2+
30P 15 15 29,97831349(7) 2,498(4) мин β+ 30Si 1+
31P 15 16 30,9737619986(7) стабилен 1/2+ 1,0000
32P 15 17 31,97390764(4) 14,268(5) сут β 32S 1+
33P 15 18 32,9717257(12) 25,35(11) сут β 33S 1/2+
34P 15 19 33,9736459(9) 12,43(10) с β 34S 1+
35P 15 20 34,9733141(20) 47,3(8) с β 35S 1/2+
36P 15 21 35,978260(14) 5,6(3) с β 36S 4−
37P 15 22 36,97961(4) 2,31(13) с β 37S (1/2+)
38P 15 23 37,98430(8) 0,64(14) с β (87,5%) 38S
β, n (12,5%) 37S
39P 15 24 38,98629(12) 282(24) мс β (73,2%) 39S 1/2+#
β, n (26,8%) 38S
40P 15 25 39,99129(16) 150(8) мс β (84,2%) 40S (2−,3−)
β, n (15,8%) 39S
41P 15 26 40,99465(13) 101(5) мс β (70%) 41S 1/2+#
β, n (30%) 40S
42P 15 27 42,00108(34) 48,5(15) мс β (50%) 42S
β, n (50%) 41S
43P 15 28 43,00502(60) 35,8(13) мс β, n 42S 1/2+#
β 43S
44P 15 29 44,01122(54)# 18,5(25) мс β 44S
45P 15 30 45,01675(54)# 8# мс [>200 нс] β 45S 1/2+#
46P 15 31 46,02466(75)# 4# мс [>200 нс] β 46S
47P[5] 15 32 47,03190(86)# 2# мс β 47S

    Пояснения к таблице

    • Распространённость изотопов приведена для большинства природных образцов.
    • Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида.
    • Символами, выделенными жирным шрифтом, обозначены стабильные продукты распада.
    • Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или чётности заключены в скобки.
    • Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 ± 0,5; 21,48(15) означает 21,48 ± 0,15; −2200,2(18) означает −2200,2 ± 1,8.

    Примечания

    1. Радиоактивные изотопы в физико-химической биологии
    2. Томский политех наладил единственное в России производство ортофосфорной кислоты на основе дефицитного фосфора-32
    3. Данные приведены по Wang M., Audi G., Kondev F. G., Huang W. J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Chinese Physics C. — 2016. Vol. 41, iss. 3. P. 030003-1—030003-442. doi:10.1088/1674-1137/41/3/030003.
    4. Данные приведены по Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. Vol. 41, iss. 3. P. 030001-1—030001-138. doi:10.1088/1674-1137/41/3/030001. — .
    5. Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. (2019). “Neutron drip line in the Ca region from Bayesian model averaging”. Physical Review Letters. 122: 062502–1—062502–6. arXiv:1901.07632. DOI:10.1103/PhysRevLett.122.062502.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.