Эквивалентность массы и энергии
Эта статья включает описание термина «энергия покоя»
Эта статья включает описание термина «E=mc2»; см. также другие значения.
Эквивале́нтность ма́ссы и эне́ргии — физическая концепция теории относительности, согласно которой полная энергия физического объекта (физической системы, тела) в состоянии покоя равна его (её) массе, умноженной на размерный множитель квадрата скорости света в вакууме:
, | (1) |
где — энергия объекта, — его масса, — скорость света в вакууме, равная 299 792 458 м/с.
В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:
1) с одной стороны, концепция означает, что масса тела (инвариантная масса, называемая также массой покоя)[1] равна (с точностью до постоянного множителя c²)[2] энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя, или в широком смысле внутренней энергии этого тела[3],
, | (2) |
где — энергия покоя тела, — его масса покоя;
2) с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, для любого движущегося объекта было введено понятие релятивистской массы, равной (с точностью до множителя c²) полной энергии этого объекта (включая кинетическую)[4],
, | (3) |
где — полная энергия объекта, — его релятивистская масса.
Первая интерпретация не является лишь частным случаем второй. Хотя энергия покоя является частным случаем энергии, а практически равна в случае нулевой или малой скорости движения тела, но имеет выходящее за рамки второй интерпретации физическое содержание: эта величина является скалярным (то есть выражаемым одним числом) инвариантным (неизменным при смене системы отсчёта) множителем в определении 4-вектора энергии-импульса, аналогичным ньютоновской массе и являющимся её прямым обобщением[5], и к тому же является модулем 4-импульса. Дополнительно, именно (а не ) является единственным скаляром, который не только характеризует инертные свойства тела при малых скоростях, но и через который эти свойства могут быть достаточно просто записаны для любой скорости движения тела[6].
Таким образом, — инвариантная масса — физическая величина, имеющая самостоятельное и во многом более фундаментальное значение[7].
В современной теоретической физике концепция эквивалентности массы и энергии используется в первом смысле[8]. Главной причиной, почему приписывание массы любому виду энергии считается чисто терминологически неудачным и поэтому практически вышло из употребления в стандартной научной терминологии, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого подхода может запутывать[9] и в конечном итоге оказывается неоправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорится о массе, имеется в виду инвариантная масса. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. Этот термин подчёркивает увеличение инертных свойств движущегося тела вместе с его энергией, что само по себе вполне содержательно[10].
В наиболее универсальной форме принцип был сформулирован впервые Альбертом Эйнштейном в 1905 году, однако представления о связи энергии и инертных свойств тела развивались и в более ранних работах других исследователей.
В современной культуре формула является едва ли не самой известной из всех физических формул, что обусловливается её связью с устрашающей мощью атомного оружия. Кроме того, именно эта формула является символом теории относительности и широко используется популяризаторами науки[11].
Эквивалентность инвариантной массы и энергии покоя
Исторически принцип эквивалентности массы и энергии был впервые сформулирован в своей окончательной форме при построении специальной теории относительности Альбертом Эйнштейном. Им было показано, что для свободно движущейся частицы, а также свободного тела и вообще любой замкнутой системы частиц, выполняются следующие соотношения[12]:
, | (1.1) |
где , , , — энергия, импульс, скорость и инвариантная масса системы или частицы, соответственно, — скорость света в вакууме. Из этих выражений видно, что в релятивистской механике, даже когда в нуль обращаются скорость и импульс тела (массивного объекта), его энергия в нуль не обращается[13], оставаясь равной некоторой величине, определяемой массой тела:
. | (1.2) |
Эта величина носит название энергии покоя[14], и данное выражение устанавливает эквивалентность массы тела этой энергии. На основании этого факта Эйнштейном был сделан вывод, что масса тела является одной из форм энергии[3] и что тем самым законы сохранения массы и энергии объединены в один закон сохранения[15].
Энергия и импульс тела являются компонентами 4-вектора энергии-импульса (четырёхимпульса)[16] (энергия — временной, импульс — пространственными) и соответствующим образом преобразуются при переходе из одной системы отсчёта в другую, а масса тела является лоренц-инвариантом, оставаясь при переходе в другие системы отсчёта постоянной, и имея смысл модуля вектора четырёхимпульса.
Несмотря на то, что энергия и импульс частиц аддитивны[17], то есть для системы частиц имеем:
(1.3) |
масса частиц аддитивной не является[12], то есть масса системы частиц, в общем случае, не равна сумме масс составляющих её частиц.
Таким образом, энергия (неинвариантная, аддитивная, временная компонента четырёхимпульса) и масса (инвариантный, неаддитивный модуль четырёхимпульса) — это две разные физические величины[7].
Эквивалентность инвариантной массы и энергии покоя означает, что в сопутствующей системе отсчёта, в которой свободное тело покоится, его энергия (с точностью до множителя ) равна его инвариантной массе[7][18].
Четырёхимпульс равен произведению инвариантной массы на четырёхскорость тела.
, | (1.4) |
Это соотношение следует считать аналогом в специальной теории относительности классического определения импульса через массу и скорость.
Понятие релятивистской массы
После того, как Эйнштейн предложил принцип эквивалентности массы и энергии, стало очевидно, что понятие массы может интерпретироваться двояко. С одной стороны, это инвариантная масса, которая — именно в силу инвариантности — совпадает с той массой, что фигурирует в классической физике, с другой — можно ввести так называемую релятивистскую массу, эквивалентную полной (включая кинетическую) энергии физического объекта[4]:
, | (2.1) |
где — релятивистская масса, — полная энергия объекта.
Для массивного объекта (тела) эти две массы связаны между собой соотношением:
, | (2.2) |
где — инвариантная («классическая») масса, — скорость тела.
Соответственно,
. | (2.3) |
Энергия и релятивистская масса — это одна и та же физическая величина (неинвариантная, аддитивная, временная компонента четырёхимпульса)[7].
Эквивалентность релятивистской массы и энергии означает, что во всех системах отсчёта энергия физического объекта (с точностью до множителя ) равна его релятивистской массе[7][19].
Введённая таким образом релятивистская масса является коэффициентом пропорциональности между трёхмерным («классическим») импульсом и скоростью тела[4]:
, | (2.4) |
Аналогичное соотношение выполняется в классической физике для инвариантной массы, что также приводится как аргумент в пользу введения понятия релятивистской массы. Это в дальнейшем привело к тезису, что масса тела зависит от скорости его движения[20].
В процессе создания теории относительности обсуждались понятия продольной и поперечной массы массивной частицы (тела). Пусть сила, действующая на тело, равна скорости изменения релятивистского импульса. Тогда связь силы и ускорения существенно изменяется по сравнению с классической механикой:
Если скорость перпендикулярна силе, то а если параллельна, то где — релятивистский фактор. Поэтому называют поперечной массой, а — продольной.
Утверждение о том, что масса зависит от скорости, вошло во многие учебные курсы и в силу своей парадоксальности приобрело широкую известность среди неспециалистов. Однако в современной физике избегают использовать термин «релятивистская масса», используя вместо него понятие энергии, а под термином «масса» понимая инвариантную массу (покоя). В частности, выделяются следующие недостатки введения термина «релятивистская масса»[8]:
- неинвариантность релятивистской массы относительно преобразований Лоренца;
- синонимичность понятий энергия и релятивистская масса, и, как следствие, избыточность введения нового термина;
- наличие различных по величине продольной и поперечной релятивистских масс и невозможность единообразной записи аналога второго закона Ньютона в виде
- методологические сложности преподавания специальной теории относительности, наличие специальных правил, когда и как следует пользоваться понятием «релятивистская масса» во избежание ошибок;
- путаница в терминах «масса», «масса покоя» и «релятивистская масса»: часть источников просто массой называют одно, часть — другое.
Несмотря на указанные недостатки, понятие релятивистской массы используется и в учебной,[21] и в научной литературе. В научных статьях понятие релятивистской массы используется по большей части только при качественных рассуждениях как синоним увеличения инертности частицы, движущейся с околосветовой скоростью.
Гравитационное взаимодействие
В классической физике гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, и его величина определяется гравитационной массой тела[22], которая с высокой степенью точности равна по величине инертной массе, о которой шла речь выше, что позволяет говорить о просто массе тела[23].
В релятивистской физике гравитация подчиняется законам общей теории относительности, в основе которой лежит принцип эквивалентности, заключающийся в неотличимости явлений, происходящих локально в гравитационном поле, от аналогичных явлений в неинерциальной системе отсчёта, движущейся с ускорением, равным ускорению свободного падения в гравитационном поле. Можно показать, что данный принцип эквивалентен утверждению о равенстве инертной и гравитационной масс[24].
В общей теории относительности энергия играет ту же роль, что и гравитационная масса в классической теории. Действительно, величина гравитационного взаимодействия в этой теории определяется так называемым тензором энергии-импульса, являющимся обобщением понятия энергии[25].
В простейшем случае точечной частицы в центрально-симметричном гравитационном поле объекта, масса которого много больше массы частицы, сила, действующая на частицу, определяется выражением[8]:
где G — гравитационная постоянная, M — масса тяжёлого объекта, E — полная энергия частицы, v — скорость частицы, — радиус-вектор, проведённый из центра тяжёлого объекта в точку нахождения частицы. Из этого выражения видна главная особенность гравитационного взаимодействия в релятивистском случае по сравнению с классической физикой: оно зависит не только от массы частицы, но и от величины и направления её скорости. Последнее обстоятельство, в частности, не позволяет ввести однозначным образом некую эффективную гравитационную релятивистскую массу, сводившую бы закон тяготения к классическому виду[8].
Предельный случай безмассовой частицы
Важным предельным случаем является случай частицы, масса которой равна нулю. Примером такой частицы является фотон — частица-переносчик электромагнитного взаимодействия[26]. Из приведённых выше формул следует, что для такой частицы справедливы следующие соотношения:
Таким образом, частица с нулевой массой вне зависимости от своей энергии всегда движется со скоростью света. Для безмассовых частиц введение понятия «релятивистской массы» в особой степени не имеет смысла, поскольку, например, при наличии силы в продольном направлении скорость частицы постоянна, а ускорение, следовательно, равно нулю, что требует бесконечной по величине эффективной массы тела. В то же время, наличие поперечной силы приводит к изменению направления скорости, и, следовательно, «поперечная масса» фотона имеет конечную величину.
Аналогично бессмысленно для фотона вводить эффективную гравитационную массу. В случае центрально-симметричного поля, рассмотренного выше, для фотона, падающего вертикально вниз, она будет равна , а для фотона, летящего перпендикулярно направлению на гравитационный центр, — [8].
Практическое значение
Полученная А. Эйнштейном эквивалентность массы тела запасённой в теле энергии стала одним из главных практически важных результатов специальной теории относительности. Соотношение показало, что в веществе заложены огромные (благодаря квадрату скорости света) запасы энергии, которые могут быть использованы в энергетике и военных технологиях[28].
Количественные соотношения между массой и энергией
В международной системе единиц СИ отношение энергии и массы выражается в джоулях на килограмм, и оно численно равно квадрату значения скорости света в метрах в секунду:
- = 89 875 517 873 681 764 Дж/кг (≈9,0⋅1016 Дж/кг).
Таким образом, 1 грамм массы эквивалентен следующим значениям энергии:
- 89,9 тераджоулей (89,9 ТДж)
- 25,0 миллионов киловатт-часов (25 ГВт·ч),
- 21,5 миллиардов килокалорий (≈21 Ткал),
- 21,5 килотонн в тротиловом эквиваленте (≈21 кт).
В ядерной физике часто применяется значение отношения энергии и массы, выраженное в мегаэлектронвольтах на атомную единицу массы — ≈931,494 МэВ/а.е.м.
Примеры взаимопревращения энергии покоя и кинетической энергии
Энергия покоя способна переходить в кинетическую энергию частиц в результате ядерных и химических реакций, если в них масса вещества, вступившего в реакцию, больше массы вещества, получившегося в результате. Примерами таких реакций являются[8]:
- Аннигиляция пары частица-античастица с образованием двух фотонов. Например, при аннигиляции электрона и позитрона образуется два гамма-кванта, и энергия покоя пары полностью переходит в энергию фотонов:
- Термоядерная реакция синтеза атома гелия из протонов и электронов, в которой разность масс гелия и протонов преобразуется в кинетическую энергию гелия и энергию электронных нейтрино
- Реакция деления ядра урана-235 при столкновении с медленным нейтроном. При этом ядро делится на два осколка с меньшей суммарной массой с испусканием двух или трёх нейтронов и освобождением энергии порядка 200 МэВ, что составляет порядка 1 процента от массы атома урана. Пример такой реакции:
В этой реакции выделяется порядка 35,6 МДж тепловой энергии на кубический метр метана, что составляет порядка 10−10 от его энергии покоя. Таким образом, в химических реакциях преобразование энергии покоя в кинетическую энергию значительно ниже, чем в ядерных. На практике этим вкладом в изменение массы прореагировавших веществ в большинстве случаев можно пренебречь, так как оно обычно лежит вне пределов возможности измерений.
В практических применениях превращение энергии покоя в энергию излучения редко происходит со стопроцентной эффективностью. Теоретически совершенным превращением было бы столкновение материи с антиматерией, однако в большинстве случаев вместо излучения возникают побочные продукты и вследствие этого только очень малое количество энергии покоя превращается в энергию излучения.
Существуют также обратные процессы, увеличивающие энергию покоя, а следовательно и массу. Например, при нагревании тела увеличивается его внутренняя энергия, в результате чего возрастает масса тела[29]. Другой пример — столкновение частиц. В подобных реакциях могут рождаться новые частицы, массы которых существенно больше, чем у исходных. «Источником» массы таких частиц является кинетическая энергия столкновения.
История и вопросы приоритета
Представление о массе, зависящей от скорости, и об имеющейся связи между массой и энергией начало формироваться ещё до появления специальной теории относительности. В частности, в попытках согласовать уравнения Максвелла с уравнениями классической механики некоторые идеи были выдвинуты в трудах Генриха Шрамма[30] (1872), Н. А. Умова (1874), Дж. Дж. Томсона (1881), О. Хевисайда (1889), Р. Сирла, М. Абрагама, Х. Лоренца и А. Пуанкаре[11]. Однако только у А. Эйнштейна эта зависимость универсальна, не связана с эфиром и не ограничена электродинамикой[31].
Считается, что впервые попытка связать массу и энергию была предпринята в работе Дж. Дж. Томсона, появившейся в 1881 году[8]. Томсон в своей работе вводит понятие электромагнитной массы, называя так вклад, вносимый в инертную массу заряженного тела электромагнитным полем, создаваемым этим телом[32].
Идея наличия инерции у электромагнитного поля присутствует также и в работе О. Хевисайда, вышедшей в 1889 году[33]. Обнаруженные в 1949 году черновики его рукописи указывают на то, что где-то в это же время, рассматривая задачу о поглощении и излучении света, он получает соотношение между массой и энергией тела в виде [34][35].
В 1900 году А. Пуанкаре опубликовал работу, в которой пришёл к выводу, что свет как переносчик энергии должен иметь массу, определяемую выражением где E — переносимая светом энергия, v — скорость переноса[36].
В работах М. Абрагама (1902 год) и Х. Лоренца (1904 год) было впервые установлено, что, вообще говоря, для движущегося тела нельзя ввести единый коэффициент пропорциональности между его ускорением и действующей на него силой. Ими были введены понятия продольной и поперечной масс, применяемые для описания динамики частицы, движущейся с околосветовой скоростью, с помощью второго закона Ньютона[37][38]. Так, Лоренц в своей работе писал[39]:
Следовательно, в процессах, при которых возникает ускорение в направлении движения, электрон ведёт себя так, как будто он имеет массу а при ускорении в направлении, перпендикулярном к движению, как будто обладает массой Величинам и поэтому удобно дать названия «продольной» и «поперечной» электромагнитных масс.
Оригинальный текст (англ.)[показатьскрыть]Hence, in phenomena in which there is an acceleration in the direction of motion, the electron behaves as if it had a mass , those in which the acceleration is normal to the path, as if the mass were . These quantities and may therefore properly be called the "longitudinal" and "transverse" electromagnetic masses of the electron
Экспериментально зависимость инертных свойств тел от их скорости была продемонстрирована в начале XX века в работах В. Кауфмана (1902 год)[40] и А. Бухерера 1908 год)[41].
В 1904—1905 годах Ф. Газенорль в своей работе приходит к выводу, что наличие в полости излучения проявляется в том числе и так, будто бы масса полости увеличилась[42][43].
В 1905 году появляется сразу целый ряд основополагающих работ А. Эйнштейна, в том числе и работа, посвящённая анализу зависимости инертных свойств тела от его энергии[44]. В частности, при рассмотрении испускания массивным телом двух «количеств света» в этой работе впервые вводится понятие энергии покоящегося тела и делается следующий вывод[45]:
Масса тела есть мера содержания энергии в этом теле; если энергия изменяется на величину L, то масса изменяется соответственно на величину L/9×1020, причём здесь энергия измеряется в эргах, а масса — в граммах… Если теория соответствует фактам, то излучение переносит инерцию между излучающими и поглощающими телами
Оригинальный текст (нем.)[показатьскрыть]Die Masse eines Körpers ist ein Maß für dessen Energieinhalt; ändert sich die Energie um L, so ändert sich die Masse in demselben Sinne um L/9.1020 wenn die Energie in Erg und die Masse in Grammen gemessen wird… Wenn die Theorie den Tatsachen entspricht, so überträgt die Strahlung trägheit zwischen den emittierenden und absorbierenden Körpern
В 1906 году Эйнштейн впервые говорит о том, что закон сохранения массы является всего лишь частным случаем закона сохранения энергии[46].
В более полной мере принцип эквивалентности массы и энергии был сформулирован Эйнштейном в работе 1907 года[47], в которой он пишет
…упрощающее предположение ε0 является одновременно выражением принципа эквивалентности массы и энергии…
Оригинальный текст (нем.)[показатьскрыть]…daß die vereinfachende Festsetzung ε0 zugleich der Ausdruck des Prinzipes der Äquivalenz von Masse und Energie ist…
Под упрощающим предположением здесь имеется в виду выбор произвольной постоянной в выражении для энергии. В более подробной статье, вышедшей в том же году[3], Эйнштейн замечает, что энергия является также и мерой гравитационного взаимодействия тел.
В 1911 году выходит работа Эйнштейна, посвящённая гравитационному воздействию массивных тел на свет[48]. В этой работе им приписывается фотону инертная и гравитационная масса равная и для величины отклонения луча света в поле тяготения Солнца выводится значение 0,83 дуговой секунды, что в два раза меньше правильного значения, полученного им же позже на основе развитой общей теории относительности[49]. Интересно, что то же самое половинное значение было получено И. фон Зольднером ещё в 1804 году, но его работа осталась незамеченной[50].
Экспериментально эквивалентность массы и энергии была впервые продемонстрирована в 1933 году. В Париже Ирен и Фредерик Жолио-Кюри сделали фотографию процесса превращения кванта света, несущего энергию, в две частицы, имеющих ненулевую массу. Приблизительно в то же время в Кембридже Джон Кокрофт и Эрнест Томас Синтон Уолтон наблюдали выделение энергии при делении атома на две части, суммарная масса которых оказалась меньше, чем масса исходного атома[51].
Влияние на культуру
С момента открытия формула стала одной из самых известных физических формул и является символом теории относительности. Несмотря на то, что исторически формула была впервые предложена не Альбертом Эйнштейном, сейчас она ассоциируется исключительно с его именем, например, именно эта формула была использована в качестве названия вышедшей в 2005 году телевизионной биографии известного учёного[52]. Известности формулы способствовало широко использованное популяризаторами науки контринтуитивное заключение, что масса тела увеличивается с увеличением его скорости. Кроме того, с этой же формулой ассоциируется мощь атомной энергии[11]. Так, в 1946 году журнал «Time» на обложке изобразил Эйнштейна на фоне гриба ядерного взрыва с формулой на нём[53][54].
- Бюст Эйнштейна в австралийском Центре науки и техники Квестакон
- «Теория относительности», одна из шести скульптур в ансамбле Walk of Ideas в Берлине
См. также
Примечания
- Поскольку эта масса инвариантна, её значение всегда совпадает с тем, которое может быть стандартным образом измерено в сопутствующей системе отсчёта (то есть, в такой системе отсчёта, которая двигается вместе с телом и относительно которой скорость тела в данный момент нулевая, иначе говоря, в системе отсчёта покоя).
- То есть с точностью до универсальной константы, которая может быть сделана просто равной единице выбором подходящей системы единиц измерения.
- Einstein A. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen (нем.) // Jahrbuch der Radioaktivität. — 1907. — Vol. 4. — P. 411—462. Архивировано 9 марта 2017 года.
Einstein A. Berichtigung zu der Arbeit: «Uber das Relativitätsprinzip und die aus demselben gezogenen Folgerungen» (нем.) // Jahrbuch der Radioaktivität. — 1907. — Vol. 5. — P. 98—99.
русский перевод: Эйнштейн А. О принципе относительности и его следствиях // Теория относительности. Избранные работы. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. — С. 83—135. — ISBN 5-93972-002-1. - Паули В. §41. Инерция энергии // Теория относительности / В. Л. Гинзбург и В. П. Фролов. — 3-е изд. — М.: Наука, 1991. — С. 166—169. — 328 с. — (Библиотека теоретической физики). — 17 700 экз. — ISBN 5-02-014346-4.
- Так же, как в нерелятивистской теории, масса входит как скалярный множитель в определение энергии и определение импульса.
- Через (и скорость) эти свойства, конечно, тоже можно записать, но гораздо менее компактно, симметрично и красиво; в другом же подходе приходится и вовсе вводить величины с несколькими компонентами, например, отличающиеся «продольную массу» и «поперечную массу».
- Угаров В. А. Глава 5.6. // Специальная теория относительности. — Москва: Наука, 1977.
- Окунь Л. Б. Понятие массы (Масса, энергия, относительность) (Методические заметки) // УФН. — 1989. — Т. 158. — С. 511—530.
- Главным образом путаница может возникать именно между массой в таком понимании и пониманием, ставшим стандартным, то есть инвариантной массой (за которой короткий термин закрепился как за величиной, имеющей самостоятельный смысл, а не просто как синоним энергии с отличием, быть может, только на постоянный коэффициент).
- Поэтому в популярной литературе и вполне оправданно, так как там термин масса призван апеллировать к физической интуиции через использование знакомого классического понятия, хотя с формальной точки зрения, важной для профессиональной терминологии, он здесь и излишен.{{подст:АИ}}
- Окунь Л. Б. Формула Эйнштейна: E0 = mc2. «Не смеётся ли Господь Бог»? // УФН. — 2008. — Т. 178. — С. 541–555.
- Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — С. 47—48. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
- В нерелятивистской механике, строго говоря, энергия также не обязана обращаться в нуль, поскольку энергия определяется с точностью до произвольного слагаемого, однако никакого конкретного физического смысла это слагаемое не имеет, поэтому выбирается обычно так, чтобы энергия покоящегося тела была равна нулю.
- Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — С. 46. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
- Бергман П. Г. Введение в теорию относительности = Introduction to the theory of relativity / В. Л. Гинзбург. — М.: Государственное издательство иностранной литературы, 1947. — С. 131—133. — 381 с.
- Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2006. — С. 49. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
- Barut A. O. Electrodynamics and classical theory of fields & particles. — New York: Dover Publications, 1980. — С. 58. — 235 с. — ISBN 0-486-64038-8.
- Угаров В. А. Глава 8.5. // Специальная теория относительности. — Москва: Наука, 1977.
- Угаров В. А. Дополнение IV. // Специальная теория относительности. — Москва: Наука, 1977.
- Фейнман Р., Лейтон Р., Сэндс М. Глава 15. Специальная теория относительности // Фейнмановские лекции по физике. Выпуск 1. Современная наука о природе. Законы механики. Выпуск 2. Пространство. Время. Движение. — 6-е изд. — Либроком, 2009. — 440 с. — ISBN 978-5-397-00892-1.
- см. например Сивухин Д. В. Общий курс физики. — М.: Наука, 1980. — Т. IV. Оптика. — С. 671—673. — 768 с.
- Сивухин Д. В. Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 302—308. — 520 с.
- В. А. Фок. Масса и энергия // УФН. — 1952. — Т. 48, вып. 2. — С. 161—165.
- В. Л. Гинзбург, Ю. Н. Ерошенко. Еще раз о принципе эквивалентности // УФН. — 1995. — Т. 165. — С. 205—211.
- Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — С. 349—361. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
- И. Ю. Кобзарев, Л. Б. Окунь. О массе фотона // УФН. — 1968. — Т. 95. — С. 131—137.
- USS Baindridge (DLGN/CGN 25) (недоступная ссылка). NavSource Online: Cruiser Photo Archive. NavSource Naval History. Дата обращения: 27 сентября 2010. Архивировано 5 августа 2011 года.
- Чернин А. Д. Формула Эйнштейна // Трибуна УФН.
- Окунь Л. Б. Понятие массы (Масса, энергия, относительность). Успехи физических наук, № 158 (1989), стр. 519.
- Heinrich Schramm. Die allgemeine Bewegung der Materie als Grundursache aller Naturerscheinungen, W. Braumul̈ler, 1872, pp. 71, 151.
- Пайс А. §7.2. Сентябрь 1905 г. О выражении // Научная деятельность и жизнь Альберта Эйнштейна. — М.: Наука, 1989. — С. 143—145. — 568 с. — 36 500 экз. — ISBN 5-02-014028-7.
- Thomson J. J. On the electric and magnetic effects produced by the motion of electrified bodies (англ.) // Philosophical Magazine. — 1881. — Vol. 11. — P. 229—249.
- Heaviside O. On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric (англ.) // Philosophical Magazine. — 1889. — Vol. 27. — P. 324—339.
- Болотовский Б. М. Оливер Хевисайд. — М.: Наука, 1985. — 254 с.
- Кларк А. XVI. Человек до Эйнштейна // Голос через океан. — М.: Связь, 1964. — 236 с. — 20 000 экз.
- Poincaré H. La théorie de Lorentz et le principe de réaction (фр.) // Archives néerlandaises des sciences exactes et naturelles. — 1900. — Vol. 5. — P. 252—278.
- Abraham M. Prinzipien der Dynamik des Elektrons (нем.) // Phys. Z.. — 1902. — Vol. 4. — P. 57—63.
Abraham M. Prinzipien der Dynamik des Elektrons (нем.) // Ann. Phys.. — 1903. — Vol. 315. — P. 105—179. - Lorentz H. Electromagnetic phenomena in a system moving with any velocity smaller than that of light (англ.) // Proceedings of the Royal Netherlands Academy of Arts and Sciences. — 1904. — Vol. 6. — P. 809—831.
- Кудрявцев, 1971, с. 39.
- Kaufmann W. Die elektromagnetische Masse des Elektrons (нем.) // Phys. Z.. — 1902. — Vol. 4. — P. 54—57. Архивировано 8 октября 2013 года.
- Bucherer A. H. On the principle of relativity and on the electromagnetic mass of the electron. A Reply to Mr. E. Cunningham (англ.) // Philos. Mag.. — 1908. — Vol. 15. — P. 316—318.
Bucherer A. H. Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie (нем.) // Phys. Z.. — 1908. — Vol. 9. — P. 755—762. - Hasenöhrl F. Zur Theorie der Strahlung in bewegten Körpern (нем.) // Ann. Phys.. — 1904. — Vol. 15 [320]. — P. 344—370.
Hasenöhrl F. Zur Theorie der Strahlung in bewegten Körpern. Berichtigung (нем.) // Ann. Phys.. — 1905. — Vol. 16 [321]. — P. 589—592. - Stephen Boughn. Fritz Hasenöhrl and E = mc² (англ.) // The European Physical Journal H. — 2013. — Vol. 38. — P. 261—278. — doi:10.1140/epjh/e2012-30061-5. — arXiv:1303.7162.
- Einstein A. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? (нем.) // Ann. Phys.. — 1905. — Vol. 18 [323]. — P. 639—641.
- Кудрявцев, 1971, с. 51.
- Einstein A. Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie (нем.) // Ann. Phys.. — 1906. — Vol. 20. — P. 627–633.
- Einstein A. Über die vom Relativitätsprinzip geforderte Trägheit der Energie (нем.) // Ann. Phys.. — 1907. — Vol. 23 [328]. — P. 371—384.
- Einstein A. Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes (нем.) // Ann. Phys.. — 1911. — Vol. 35 [340]. — P. 898—908.
- Einstein A. Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie (нем.) // Preussische Akademie der Wissenschaften, Sitzungsberichte. — 1915. — Vol. 47, Nr. 2. — P. 831—839.
- von Soldner J. Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung, durch die Attraktion eines Weltkörpers, an welchem er nahe vorbei geht (нем.) // Astronomisches Jahrbuch für das Jahr. — 1804. — P. 161—172.
- E=mc² (англ.) (недоступная ссылка). The Center for History of Physics. Дата обращения: 22 января 2011. Архивировано 20 января 2011 года.
- E=mc² (англ.) на сайте Internet Movie Database
- Friedman A. J., Donley C. C. Einstein as Myth and Muse. — Cambridge: Cambridge Univ. Press, 1985. — С. 154—155. — 224 с. — ISBN 9780521267205.
- Albert Einstein (недоступная ссылка). Time magazine (1 июля 1946). Дата обращения: 30 января 2011. Архивировано 19 февраля 2011 года.
Литература
- Джеммер М. Понятие массы в классической и современной физике. — М.: Прогресс, 1967. — 255 с.
- Okun L. B. Energy and mass in relativistic theory. — World Scientific, 2009. — 311 с.
- Кудрявцев П. С. Глава третья. Решение проблемы электродинамики движущихся сред // История физики. Т. III От открытия квант до квантовой механики. — М.: Просвещение, 1971. — С. 36—57. — 424 с. — 23 000 экз.
Ссылки
- Einstein Explains the Equivalence of Energy and Matter (англ.) (недоступная ссылка). Американский институт физики. — Аудиозапись лекции Альберта Эйнштейна, в которой он объясняет принцип эквивалентности массы и энергии. Дата обращения: 19 августа 2010. Архивировано 22 июля 2010 года.
- The Antimatter Calculator (англ.) (недоступная ссылка). Edward Muller's Homepage. — Калькулятор антиматерии. Дата обращения: 31 января 2011. Архивировано 25 декабря 2005 года.
- Страница рукописи Эйнштейна 1912 года с уравнением E=mc² (англ.) (недоступная ссылка). Symmetry Magazine. Дата обращения: 31 января 2011. Архивировано 2 октября 2006 года.
- «Почему E = mc2?». Глава из книги Брайан Кокс, Джефф Форшоу