Пар

Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества, то есть при температурах ниже критической температуры вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация.

Модель пара над жидкостью. Молекулы вещества вылетают из жидкости в результате испарения (парообразования) и одновременно молекулы из газовой фазы переходят в жидкость в результате конденсации пара.
Туман
Выброс пара на Европе в представлении художника

При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Подразумевается, что жидкая или твёрдая фазы могут представлять собой как индивидуальное вещество так и механическую смесь веществ — влажное вещество[1]. Пары́ прочих веществ оговариваются в явном виде.

У разных жидкостей динамическое равновесие с паром наступает при различной плотности пара. Причина этого заключается в различии сил межмолекулярного взаимодействия. В жидкостях, у которых силы межмолекулярного притяжения велики, например у ртути, только наиболее быстрые молекулы, число которых незначительно, могут вылетать из жидкости. Поэтому для таких жидкостей уже при небольшой плотности пара наступает состояние равновесия. У летучих жидкостей с малой силой притяжения молекул, например у эфира, при той же температуре может вылететь за пределы жидкости множество молекул. Поэтому и равновесное состояние наступает только при значительной плотности пара.

Не следует путать оптически однородный и гомогенный пар с туманом — взвеси мелких капелек жидкости в газе — гетерогенной системой, сильно рассеивающей свет.

Насыщенный и ненасыщенный пар

Различают следующие виды состояний пара химически чистых веществ:

  • Ненасыщенный пар — пар, не достигший динамического равновесия с жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому количество жидкости в сосуде с течением времени уменьшается.
  • Насыщенный пар — пар, находящийся в динамическом равновесии с жидкостью (скорость испарения равна скорости конденсации). Это означает, что при данной температуре в этом объёме не может находиться большее количество пара. Если сжимать пар, находящийся в равновесии с жидкостью под поршнем (при условии, что воздух из сосуда предварительно откачан), то равновесие будет нарушаться. Так как плотность пара в первый момент увеличится, то увеличится конденсация (из пара в жидкость начнет переходить большее количество молекул, чем из жидкости в газ). Этот процесс будет продолжаться до тех пор, пока вновь не установятся динамическое равновесие и плотность пара, а следовательно, и концентрация молекул газа не примет прежнее значение.
  • Пересыщенный пар — пар, давление которого превышает давление насыщенного пара при данной температуре[2]. Может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации (пылинок, ионов, капелек жидкости малых размеров и т. д.). Другой способ получения — охлаждение насыщенного пара при тех же условиях. В связи с последним способом получения насыщенного пара применительно к нему используется также наименование переохлаждённый пар[3][4][5]. Кроме того, иногда в литературе встречается термин перенасыщенный пар.

Водяной пар

Водяной пар — газообразное состояние воды.

Благодаря своим свойствам, водяной пар получил широкое распространение в разнообразной деятельности человека.

См. также

Примечания

  1. РМГ 75-2014. Измерения влажности веществ. Термины и определения, 2015, с. 2.
  2. Пересыщенный пар // Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1984. — С. 529. — 944 с.
  3. Любитов Ю. Н. Насыщенный пар // Физическая энциклопедия / Гл. ред. А. М. Прохоров. М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 248. — 672 с. 48 000 экз. — ISBN 5-85270-019-3.
  4. Сивухин Д. В. Общий курс физики. М.: Физматлит, 2005. — Т. II. Термодинамика и молекулярная физика. — С. 384. — 544 с. — ISBN 5-9221-0601-5.
  5. Савельев И. В.. Курс общей физики. М.: «Наука», 1970. — Т. I. Механика. Молекулярная физика. — С. 414—415.

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.