Нитрид галлия
Нитри́д га́ллия — бинарное неорганическое химическое соединение галлия и азота. Химическая формула GaN. При обычных условиях очень твёрдое вещество с кристаллической структурой типа вюрцита. Прямозонный полупроводник с широкой запрещённой зоной — 3,4 эВ (при 300 K).
Нитрид галлия | |
---|---|
![]() Элементарная ячейка кристалла GaN типа вюрцита. Ga N | |
![]() | |
Общие | |
Систематическое наименование |
Нитрид галлия |
Традиционные названия | азотистый галлий, мононитрид галлия, нитрид галлия(III) |
Хим. формула | GaN |
Рац. формула | GaN |
Физические свойства | |
Состояние | жёлтый порошок |
Молярная масса | 83,73 г/моль |
Плотность | 6,15 г/см³ |
Термические свойства | |
Температура | |
• плавления | >2500[1] |
Теплопроводность | 130 Вт/(м·K) |
Химические свойства | |
Растворимость | |
• в воде | Взаимодействует |
Оптические свойства | |
Показатель преломления | 2,29 |
Структура | |
Координационная геометрия | тетраэдральная, пространственная группа C6v4-P63mc |
Кристаллическая структура |
типа вюрцита, a = 0,319 нм, b = 0,519 нм[2] |
Классификация | |
Рег. номер CAS | 25617-97-4 |
PubChem | 117559 |
Рег. номер EINECS | 247-129-0 |
SMILES | |
InChI | |
RTECS | LW9640000 |
ChemSpider | 105057 |
Безопасность | |
Токсичность | Нетоксичен |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
![]() |
Используется в качестве полупроводникового материала для изготовления оптоэлектронных приборов ультрафиолетового диапазона. Начал широко использоваться в светодиодах с 1990 года, а также мощных и высокочастотных полупроводниковых приборах. Имеет повышенную устойчивость к ионизирующему излучению (также, как и другие полупроводниковые материалы — нитриды III группы), что перспективно для создания длительно работающих солнечных батарей космических аппаратов.
Из-за того, что транзисторы из нитрида галлия могут сохранять работоспособность при более высоких температурах и напряжениях, чем транзисторы из арсенида галлия, этот материал становится всё более привлекательным для создания приборов, применяемых в усилителях мощности СВЧ.
Физические свойства
При нормальных условиях — бесцветный прозрачный кристалл. Кристаллизуется в структуре типа вюрцита, также возможна кристаллизация метастабильной фазы со структурой сфалерита (цинковой обманки). Тугоплавок и твёрд. В чистом виде довольно прочный. Обладает высокой теплопроводностью и теплоёмкостью[3].
Является прямозонным полупроводником с шириной запрещённой зоны 3.39 эВ при 300 K. В чистом виде может быть выращен в виде монокристаллических тонких плёнок на подложках из сапфира или карбида кремния, несмотря на то, что их постоянные решёток различны[3]. При легировании кремнием, либо кислородом приобретает электронный тип проводимости. При легировании магнием становится полупроводником с дырочным типом проводимости[4][5]. Но атомы кремния и магния, внедряясь в кристаллическую решётку GaN искажают её, что вызывает механическое растяжение кристаллической решётки и придаёт монокристаллам хрупкость[6]. Плёнки нитрида галлия, как правило, имеют высокую поверхностную концентрацию дислокаций (от 100 млн до 10 млрд на см2)[7].
Нитрид галлия является перспективным материалом для создания высокочастотных, теплостойких и мощных полупроводниковых приборов[8].
Применение
Широко используется для создания светодиодов, полупроводниковых лазеров, сверхвысокочастотных транзисторов.
Кристаллический нитрид галлия высокого качества может быть получен при низкой температуре методом осаждения из парогазовой фазы на AlN — буферном слое[9]. Получение кристаллов нитрида галлия высокого качества позволило изучить проводимость p-типа данного соединения[5], благодаря реализации p-n-перехода, создать синие и УФ светодиоды[5], эффективно излучающие при комнатной температуре[10] (необходимая для лазерного излучения)[11]. Это привело к коммерциализации высокопроизводительных синих светодиодов и долгосрочной жизни фиолетово-лазерных диодов, а также дало развитие устройств на основе нитридов, таких как детекторы УФ и высокоскоростных полевых транзисторов.
Создание синих светодиодов из GaN, обладающих высокой яркостью излучения было последним в разработке светодиодов основных цветов и это позволило создать полноцветные светодиодные экраны[12].
Нитриды (полупроводники) третьей группы признаны одними из самых перспективных материалов для изготовления оптических приборов в видимой коротковолновой и УФ-области. Потенциальные рынки для высокомощных и высокочастотных приборов на основе GaN включают в себя СВЧ (радиочастотные усилители мощности) и высоковольтные коммутационные устройства для электрических сетей. Большая ширина запрещённой зоны означает, что работоспособность транзисторов из нитрида галлия сохраняется при более высоких температурах, по сравнению с кремниевыми транзисторами. В 1993 году были получены первые экспериментальные полевые транзисторы из нитрида галлия[13]. Сейчас эта область активно развивается.
Перспективным направлением использованием нитрида галлия является военная электроника, в частности, твердотельные приёмопередающие модули на основе GaN активной фазированной антенной решётки[14]. В Европе лидером в разработке и применении в АФАР технологии приёмопередающих модулей (ППМ) на основе GaN является компания Airbus Defence and Space[15][16], разработавшая и предлагающая ВМС ряда стран новую корабельную РЛС TRS-4D.
Синтез
Кристаллы нитрида галлия выращивают прямым синтезом из элементов и при давлении 100 атм в атмосфере азота и температуре 750 °C (повышенное давления газовой среды необходимо для осуществления реакции галлия и азота при относительно невысоких температурах; в условиях низкого давления галлий не вступает в реакцию с азотом ниже 1000 °C):
- .
Порошок нитрида галлия можно также получить из химически более активных веществ:
- ,
- .
Безопасность
Нитрид галлия является нетоксичным веществом[17], но его пыль вызывает раздражение кожи, глаз и лёгких. Источниками нитрида галлия могут быть выбросы промышленных предприятий.
Ссылки
Примечания
- T. Harafuji and J. Kawamura. Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal : Appl. Phys.. — 2004. — С. 2501. — doi:10.1063/1.1772878.
- Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 2001, 1–30
- Isamu Akasaki and Hiroshi Amano. Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters : Jpn. J. Appl. Phys.. — 1997. — С. 5393–5408. — doi:10.1143/JJAP.36.5393.
- Information Bridge: DOE Scientific and Technical Information — Document #434361
- Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu и Isamu Akasaki. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) : Jpn. J. Appl. Phys.. — 1989. — С. L2112-L2114. — doi:10.1143/JJAP.28.L2112.
- Shinji Terao, Motoaki Iwaya, Ryo Nakamura, Satoshi Kamiyama, Hiroshi Amano и Isamu Akasaki. Fracture of AlxGa1-xN/GaN Heterostructure —Compositional and Impurity Dependence. — 2001. — С. L195-L197. — doi:10.1143/JJAP.40.L195.
- lbl.gov, blue-light-diodes
- Hajime Okumura. Present Status and Future Prospect of Widegap Semiconductor High-Power Devices : Jpn. J. Appl. Phys.. — 2006. — С. 7565–7586. — doi:10.1143/JJAP.45.7565.
- H. Amano. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer : Applied Physics Letters. — 1986. — С. 353. — doi:10.1063/1.96549. (недоступная ссылка)
- Hiroshi Amano, Tsunemori Asahi and Isamu Akasaki. Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer : Jpn. J. Appl. Phys.. — 1990. — С. L205-L206. — doi:10.1143/JJAP.29.L205.
- Isamu Akasaki, Hiroshi Amano, Shigetoshi Sota, Hiromitsu Sakai, Toshiyuki Tanaka и Masayoshi Koike. Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device : Jpn. J. Appl. Phys.. — 1995. — С. L1517-L1519. — doi:10.1143/JJAP.34.L1517.
- Morkoç, H. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies : Journal of Applied Physics. — 1994. — С. 1363. — doi:10.1063/1.358463.
- Asif Khan, M. Metal semiconductor field effect transistor based on single crystal GaN : Applied Physics Letters. — 1993. — С. 1786. — doi:10.1063/1.109549.
- «Gallium Nitride-Based Modules Set New 180-Day Standard For High Power Operation.» Northrop Grumman, 13 April 2011.
- Cassidian ex-tends its leading position in state-of-the-art radar technology
- TRS-4D Naval Radar Архивировано 27 января 2013 года.
- NC State News :: NC State News and Information " Research Finds Gallium Nitride is Non-Toxic, Biocompatible — Holds Promise For Biomedical Implants