Модуль Юнга

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Модуль Юнга
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

  •  — нормальная составляющая силы,
  •  — площадь поверхности, по которой распределено действие силы,
  •  — длина деформируемого стержня,
  •  — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина ).

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где  — плотность вещества.

Связь с другими модулями упругости

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

и

где  — коэффициент Пуассона.

Температурная зависимость модуля Юнга

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где  — адиабатический модуль упругости идеального кристалла при ;  — дефект модуля, обусловленный тепловыми фононами;  — дефект модуля, обусловленный тепловым движением электронов проводимости[2].

Значения модуля Юнга для некоторых материалов

Значения модуля Юнга для некоторых материалов приведены в таблице

Материалмодуль Юнга E, ГПа Источник
Алюминий70 [3]
Бронза75—125 [3]
Вольфрам350 [3]
Германий83 [3]
Графен 1000 [4]
Дюралюминий74 [3]
Железо180 [5]
Иридий520 [3]
Кадмий50 [3]
Кобальт210 [3]
Константан163 [3]
Кремний109 [3]
Латунь95 [3]
Лёд3 [3]
Магний45 [3]
Манганин124 [3]
Медь110 [3]
Никель210 [3]
Ниобий155 [6]
Олово35 [3]
Свинец18 [3]
Серебро80 [3]
Серый чугун110 [3]
Сталь190—210 [3]
Стекло70 [3]
Титан112 [3]
Фарфор59 [3]
Цинк120 [3]
Хром300 [3]

См. также

Примечания

  1. Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия. — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К // Конденсированные среды и межфазные границы. — 2008. Т. 10, вып. 3. С. 226—235.
  3. Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях // Успехи физических наук. М.: РАН, ФИАН, 2014. Т. 184, вып. 10. С. 1051.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. Т. 27, вып. 5. С. 547—557.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. Т. 30, вып. 1. С. 115—125.

Литература

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.