Параметры Ламе

Пара́метры Ламе́, коэффициенты Ламе[1][2][3], константы Ламе[4][5], постоянные Ламе[6][7], упругие постоянные Ламе[8][9][10], модули упругости Ламе[11] (названные в честь Габриэля Ламе) — материальные константы, характеристики упругих деформаций изотропных твёрдых тел, модули упругости.

В линейной теории упругости закон Гука выражает линейную зависимость между тензором деформации ε и тензором напряжений σ в упругой среде:

Здесь λ называется первым параметром Ламе, а μ (модуль сдвига, Н/м²) — вторым параметром Ламе.

Определение через энергию

Энергия упругой деформации является квадратичной формой тензора деформации. Из тензора второго ранга можно составить две разные симметричные скалярные комбинации второй степени. Такими скалярами являются и .

Вклад упругих деформаций в свободную энергию, таким образом, является линейной комбинацией этих двух скаляров с коэффициентами, которые называются параметрами Ламе.

.

Связь с другими модулями упругости

Параметр Ламе μ совпадает с модулем сдвига.

Модуль всестороннего сжатия К выражается через параметры Ламе следующим образом:

Через модуль Юнга E и коэффициент Пуассона ν параметры Ламе выражаются следующим образом:

Литература

  • Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, т.VII. Теория упругости. — Наука, 1987.

Примечания

  1. Седов Л.И. Механика сплошной среды. СПб.: Лань, 2004. — Т. 1. — С. 166. — 528 с. — ISBN 5-8114-0541-3.
  2. Ландау Л.Д., Лифшиц Е.М. Теория упругости / Теоретическая физика. В 10-ти т. М.: Наука, 1987. — Т. 7. — С. 21. — 258 с.
  3. Лурье А.И. Теория упругости. М.: Наука, 1970. — С. 111. — 940 с.
  4. Ильюшин А.А. Механика сплошной среды. М.: Изд-во Моск. ун-та, 1978. — С. 194. — 288 с.
  5. Тимошенко С.П., Гудьер Дж. Теория упругости / Пер. с англ. под ред. Г.С.Шапиро. М.: Наука, 1975. — С. 20. — 576 с.
  6. Кац А.М. Теория упругости. СПб.: Лань, 2002. — С. 48. — 208 с. — ISBN 5-8114-0453-0.
  7. Новацкий В. Теория упругости / Пер с польск. Б.Е.Победри. М.: Мир, 1975. — С. 102. — 872 с.
  8. Работнов Ю.Н. Механика деформируемого твёрдого тела. М.: Наука, 1988. — С. 239. — 712 с. — ISBN 5-02-013812-6.
  9. Амензаде Ю.А. Теория упругости. М.: Высшая школа, 1976. — С. 68. — 272 с.
  10. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред (в приложении к теории волн) / Отв. ред. Г.И.Баренблатт. М.: Наука, 1982. — С. 48. — 336 с.
  11. Зоммерфельд А. Механика деформируемых сред / Пер. с нем. Е.М.Лифшица. М.: ИЛ, 1954. — С. 83. — 488 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.