Газовые гидраты

Газовые гидраты (также гидраты природных газов или клатраты) — кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Название «клатраты» (от лат. clat(h)ratus — «закрытый решёткой, посаженный в клетку»), было дано Пауэллом в 1948 году. Гидраты газа относятся к нестехиометрическим соединениям, то есть соединениям переменного состава.

Горение гидрата метана.
На врезке: модель кристаллической решётки этого гидрата.

Впервые гидраты газов (сернистого газа и хлора) наблюдали ещё в конце XVIII века Дж. Пристли, Б. Пелетье и В. Карстен. Первые описания газовых гидратов были приведены Г. Дэви в 1810 году (гидрат хлора). В 1823 г. Фарадей приближённо определил состав гидрата хлора, в 1829 г. Левит обнаружил гидрат брома, а в 1840 г. Вёлер получил гидрат H2S. К 1888 году П. Виллар получает гидраты CH4, C2H6, C2H4, C2H2 и N2O[1].

Клатратная природа газовых гидратов подтверждена в 1950-е гг. после рентгеноструктурных исследований Штакельберга и Мюллера, работ Полинга, Клауссена.

В 1940-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты (Стрижов, Мохнаткин, Черский). В 1960-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. Одновременно с этим возможность образования и существования гидратов в природных условиях находит лабораторное подтверждение (Макогон).

С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. По различным оценкам, запасы земных углеводородов в гидратах составляют от 1,8⋅105 до 7,6⋅109 км³[2]. Выясняется их широкое распространение в океанах и криолитозоне материков, нестабильность при повышении температуры и понижении давления.

В 1969 г. началась разработка Мессояхского месторождения в Сибири, где, как считается, впервые удалось (по чистой случайности) извлечь природный газ непосредственно из гидратов (до 36 % от общего объёма добычи по состоянию на 1990 г.)[3].

Сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также возможный фактор изменения климата (см. Гипотеза о метангидратном ружье).

Свойства гидратов

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.[4]

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

  • Массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла.
  • Вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла.
  • Гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160—180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/м³).

Фазовая диаграмма гидрата метана

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса — Платтеу[5][6]. Основные положения данной теории:

  • Решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида.
  • В каждой молекулярной полости может находиться не более одной молекулы-гостя.
  • Взаимодействие молекул-гостей пренебрежимо мало.
  • К описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса — Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

Строение гидратов

Кристаллические модификации газогидратов.

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы[7]. Эти полости могут занимать молекулы газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H2O, где М — молекула газа-гидратообразователя, n — число молекул воды, приходящихся на одну включённую молекулу газа, причём n — переменное число, зависящее от типа гидратообразователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС — соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I (англ. sI), КС-II (англ. sII), в то время как остальные являются метастабильными.

Некоторые структуры клатратных каркасов газовых гидратов[8]:

Тип структурыПолостиФормула элементарной ячейкиПараметры ячейки, ÅПример гостевой молекулы
Кубическая КС-ID, T6T x 2D x 46 H2Oa = 12CH4
Кубическая КС-IIH, D8H x 16D x 136 H2Oa = 17,1C3H8, ТГФ
Тетрагональная ТС-IP, T, D4P x 16T x 10D x 172 H2O[1]a = 12,3
c = 10,2
Ar (при высоком давлении), Br2
Гексагональная ГС-IIIE, D, D'E x 3D x 2D' x 34 H2Oa = 23,5
c = 12,3
C10H16 + CH4

Газовые гидраты в природе

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Они встречаются в морских донных осадках и в областях многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка — очистка газа от паров воды.

Научные исследования

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

  • активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение которого может начаться в ближайшие годы;
  • необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;
  • изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);
  • активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;
  • целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;
  • возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В последние годы (после проведения в 2003 году совещания (недоступная ссылка) в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН, небольшие гранты РФФИ, грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов — ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет»[9] — морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research — обучение через исследования), КОМЕКС (Kurele-Okhotsk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002—2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учётом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования.

В настоящее время[когда?] исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

Геологические исследования газовых гидратов

В 1970 году в Государственный реестр открытий СССР было внесено научное открытие «Свойство природных газов находиться в твёрдом состоянии в земной коре» под № 75 с приоритетом от 1961 г., сделанное российскими учёными В. Г. Васильевым, Ю. Ф. Макогоном, Ф. Г. Требиным, А. А. Трофимуком и Н. В. Черским.[10] После этого геологические исследования газовых гидратов получили серьёзный импульс. Прежде всего, были разработаны графоаналитические методы выделения термодинамических зон стабильности газогидратов в земной коре (ЗСГ). При этом выяснилось, что зона стабильности гидратов (ЗСГ) метана, наиболее распространённого в земной коре углеводородного газа, покрывает до 20 % суши (в районах распространения криолитозоны) и до 90 % дна океанов и морей.

Эти сугубо теоретические результаты активизировали поиски гидратосодержащих пород в природе: первые успешные результаты были получены сотрудниками ВНИИГАЗа А. Г. Ефремовой и Б. П. Жижченко при донном пробоотборе в глубоководной части Чёрного моря в 1972 году. Они визуально наблюдали вкрапления гидратов, похожие на иней в кавернах извлечённого со дна грунта. Фактически, это первое, официально признанное в мире наблюдение природных газовых гидратов в породах. Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в Каспийском море (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим учёным (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).

Большой вклад в геологические и геофизические исследования гидратосодержащих пород внесли сотрудники Норильской комплексной лаборатории ВНИИГАЗа М. Х. Сапир, А. Э. Беньяминович и др., изучавшие Мессояхское газовое месторождение, начальные пластовые Р, Т-условия которого практически совпадали с условиями гидратообразования метана. Этими исследователями в начале 70-х годов были заложены принципы распознавания гидратосодержащих пород по данным комплексного скважинного каротажа. В конце 70-х годов исследования в этой области в СССР практически прекратились. В то же время, в США, Канаде, Японии и других странах они получили развитие и к настоящему времени отработаны методики геофизического выделения гидратонасыщенных пород в геологических разрезах по данным комплекса каротажных данных. В России на базе ВНИИГАЗа были поставлены одни из первых экспериментальных исследований в мире по моделированию гидратообразования в дисперсных породах. Так, А. С. Схаляхо (1974 г.) и В. А. Ненахов (1982 г.) путём насыщения гидратами песчаных образцов установили закономерность изменения относительной проницаемости породы по газу в зависимости от гидратонасыщенности (А. С. Схаляхо) и предельный градиент сдвига поровой воды в гидратосодержащих породах (В. А. Ненахов) — две важные для прогноза добычи газогидратного газа характеристики.

Также была проведена важная работа Е. В. Захарова и С. Г. Юдина (1984 г.) по перспективам поиска гидратосодержащих отложений в Охотском море. Эта публикация оказалась прогностической: через два года после её опубликования появилась целая серия статей об обнаружении гидратосодержащих отложений при сейсмопрофилировании, донном пробоотборе, и даже при визуальном наблюдении с подводных обитаемых аппаратов в различных частях Охотского моря. К настоящему времени ресурсы гидратного газа России только в обнаруженных субмаринных скоплениях оцениваются в несколько триллионов м³. Несмотря на прекращение финансирования исследований по природным газогидратам в 1988 году, работы во ВНИИГАЗе были продолжены В. С. Якушевым, В. А. Истоминым, В. И. Ермаковым и В. А. Скоробогатовым на безбюджетной основе (исследования природных газогидратов не включались в официальную тематику института вплоть до 1998 года). Особую роль в организации и постановке исследований сыграл профессор В. И. Ермаков, который постоянно уделял внимание последним достижениям в области природных газогидратов и поддерживал эти исследования во ВНИИГАЗе на протяжении всей своей работы в институте.

В 1986—1988 гг. были разработаны и сконструированы две оригинальные экспериментальные камеры по исследованию газогидратов и гидратосодержащих пород, одна из которых позволяла наблюдать за процессом образования и разложения гидратов углеводородных газов под оптическим микроскопом, а другая — проводить изучение образования и разложения гидратов в породах различного состава и строения благодаря сменной внутренней гильзе.

К настоящему времени подобные камеры в модифицированном виде для исследований гидратов в поровом пространстве используются в Канаде, Японии, России и других странах. Проведённые экспериментальные исследования позволили обнаружить эффект самоконсервации газогидратов при отрицательных температурах.

Он заключается в том, что если монолитный газогидрат, полученный при обычных равновесных условиях, охладить до температуры ниже 0°С и сбросить давление над ним до атмосферного, то после первичного поверхностного разложения, газогидрат самоизолируется от окружающей среды тонкой плёнкой льда, препятствующей дальнейшему разложению. После этого гидрат может храниться длительное время при атмосферном давлении (зависит от температуры, влажности и других параметров внешней среды). Обнаружение этого эффекта внесло значительный вклад в изучение природных газогидратов.

Разработка методики получения и изучения гидратосодержащих образцов различных дисперсных пород, уточненение методики изучения природных гидратосодержащих образцов, проведение первые исследования природных гидратосодержащих образцов, поднятых из мёрзлой толщи Ямбургского ГКМ (1987 г.) подтвердили существование гидратов метана в «законсервированном» виде в мёрзлой толще, а также позволили установить новый тип газогидратных залежей — реликтовые газогидратные залежи, распространённые вне современной ЗСГ.

Кроме того, эффект самоконсервации открыл новые возможности для хранения и транспорта газа в сконцентрированном виде, но без повышенного давления. Впоследствии эффект самоконсервации экспериментально был подтверждён исследователями в Австрии (1990 г.) и Норвегии (1994 г.) и в настоящее время исследуется специалистами из разных стран (Япония, Канада, США, Германия, Россия).

В середине 1990-х годов ВНИИГАЗом в содружестве с Московским Государственным Университетом (кафедра геокриологии — доцент Е. М. Чувилин с сотрудниками) были проведены исследования образцов керна из интервалов газопроявлений из толщи ММП в южной части Бованенковского ГКМ по методике, разработанной ранее при исследованиях образцов ММП Ямбургского ГКМ.

Результаты исследований показали присутствие в поровом пространстве мёрзлых пород рассеянных реликтовых газогидратов. Аналогичные результаты позже были получены и при исследовании ММП в дельте реки Маккензи (Канада), где гидраты были идентифицированы не только по предложенной российской методике, но и наблюдались в керне визуально.

Экспериментальные и теоретические исследования свойств газовых гидратов

В 1960—1970-е годы основное внимание уделялось условиям образования газовых гидратов из бинарных и многокомпонентных смесей, в том числе и в присутствии ингибиторов гидратообразования.

Экспериментальные исследования проводились специалистами ВНИИГАЗа Б. В. Дегтяревым, Э. Б. Бухгалтером, В. А. Хорошиловым, В. И. Семиным и др. На базе этих исследований были предложены первые эмпирические методы расчёта фазовых равновесий газовых гидратов и разработаны инструкции по предупреждению гидратообразования в системах добычи газа.

Освоение Оренбургского месторождения с аномально-низкими пластовыми температурами привело к необходимости изучения проблем, связанных с гидратообразованием сероводородсодержащих газов. Это направление разрабатывалось А. Г. Бурмистровым. Им были получены практически важные данные по гидратообразованию в трёхкомпонентных газовых смесях «метан — сероводород — диоксид углерода» и разработаны уточнённые методики расчёта применительно к сероводородсодержащим природным газам месторождений Прикаспийской впадины.

Следующий этап исследований термодинамики гидратообразования связан с освоением гигантских северных месторождений — Уренгойского и Ямбургского. Для совершенствования методов предупреждения гидратообразования применительно к системам сбора и промысловой обработки конденсатсодержащих газов понадобились экспериментальные данные по условиям гидратообразования в высококонцентрированных растворах метанола в широком диапазоне температур и давлений. В ходе экспериментальных исследований (В. А. Истомин, Д. Ю. Ступин и др.) выяснились серьёзные методические трудности получения представительных данных при температурах ниже минус 20 °C. В связи с этим была разработана новая методика исследований фазовых равновесий газовых гидратов из многокомпонентных газовых смесей с регистрацией тепловых потоков в гидратной камере и при этом обнаружена возможность существования метастабильных форм газовых гидратов (на стадии их образования), что подтвердилось последующими исследованиями зарубежных авторов. Анализ и обобщение новых экспериментальных и промысловых данных (как отечественных, так и зарубежных) дал возможность разработать (В. А. Истомин, В. Г. Квон, А. Г. Бурмистров, В. П. Лакеев) инструкцию по оптимальному расходу ингибиторов гидратообразования (1987 г.).

В настоящее время во ВНИИГАЗе начат новый цикл исследований по предупреждению техногенного гидратообразования. Значительные усилия учёных А. И. Гриценко, В. И. Мурина, Е. Н. Ивакина и В. М. Булейко были посвящены исследованиям теплофизических свойств газовых гидратов (теплотам фазовых переходов, теплоемкостям и теплопроводностям).

В частности, В. М. Булейко, проводя калориметрические исследования газового гидрата пропана, обнаружил метастабильные состояния газовых гидратов при их разложении. Что касается кинетики гидратообразования, то ряд интересных результатов был получен В. А. Хорошиловым, А. Г. Бурмистровым, Т. А. Сайфеевым и В. И. Семиным, особенно по гидратообразованию в присутствии ПАВ.

В последние годы эти ранние исследования российских учёных были «подхвачены» специалистами ряда зарубежных фирм с целью разработки новых классов так называемых низкодозируемых ингибиторов гидратообразования.

Проблемы и перспективы, связанные с природными газогидратами

Освоение месторождений севера Западной Сибири с самого начала столкнулось с проблемой выбросов газа из неглубоких интервалов криолитозоны. Эти выбросы происходили внезапно и приводили к остановке работ на скважинах и даже к пожарам. Так как выбросы происходили из интервала глубин выше зоны стабильности газогидратов, то длительное время они объяснялись перетоками газа из более глубоких продуктивных горизонтов по проницаемым зонам и соседним скважинам с некачественным креплением. В конце 80-х годов на основе экспериментального моделирования и лабораторных исследований мёрзлого керна из криолитозоны Ямбургского ГКМ удалось выявить распространение рассеянных реликтовых (законсервировавшихся) гидратов в четвертичных отложениях. Эти гидраты совместно с локальными скоплениями микробиального газа могут сформировать газоносные пропластки, откуда происходят выбросы при бурении. Присутствие реликтовых гидратов в неглубоких слоях криолитозоны было в дальнейшем подтверждено аналогичными исследованиями на севере Канады и в районе Бованенковского ГКМ. Таким образом, сформировались представления о новом типе газовых залежей — внутримерзлотных метастабильных газ-газогидратных залежах, которые, как показали испытания мерзлотных скважин на Бованенковском ГКМ, представляют собой не только осложняющий фактор, но и определённую ресурсную базу для местного газоснабжения.

Внутримерзлотные залежи содержат лишь незначительную часть ресурсов газа, которые связывают с природными газогидратами. Основная часть ресурсов приурочена к зоне стабильности газогидратов — тому интервалу глубин (обычно первые сотни метров), где имеют место термодинамические условия для гидратообразования. На севере Западной Сибири это интервал глубин 250—800 м, в морях — от поверхности дна до 300—400 м, в особо глубоководных участках шельфа и континентального склона до 500—600 м под дном. Именно в этих интервалах была обнаружена основная масса природных газогидратов.

В ходе изучения природных газогидратов выяснилось, что отличить гидратосодержащие отложения от мёрзлых современными средствами полевой и скважинной геофизики не представляется возможным. Свойства мёрзлых пород практически полностью аналогичны свойствам гидратосодержащих. Определённую информацию о присутствии газогидратов может дать каротажное устройство ядерного магнитного резонанса, но оно весьма дорогостояще и применяется крайне редко в практике геолого-разведочных работ. Основным показателем наличия гидратов в отложениях являются исследования керна, где гидраты либо видны при визуальном осмотре, либо определяются по замеру удельного газосодержания при оттаивании.

Эксперимент по добыче газовых гидратов в Японии

В феврале 2012 года японское исследовательское судно «Тикю», арендованное Японской корпорацией нефти, газа и металлов (Japan Oil, Gas and Metals National Corp), начало пробное бурение скважин под океанским дном в 70 км к югу от полуострова Ацуми (близ города Нагоя) с целью экспериментов по добыче метангидратов. Предполагается пробурить три скважины глубиной 260 м (глубина океана в этом месте — около километра) с целью проверки возможности добычи газовых гидратов и проведения измерений. Ожидается, что для перевода метангидратов в газ будет использоваться процесс разгерметизации, разработанный консорциумом MH21[11][12]. 12 марта 2013 года Japan Oil, Gas & Metals National Corp. (Jogmec) заявила о начале пробной эксплуатации подводного газгидратного месторождения и получении из него первого природного газа[13]. 28 июня 2017 года был закончен второй тестовый этап добычи гидрата метана. Всего за 24 дня с 2 скважин было добыто 235 тыс. м³ газа[14]. Вскоре планируется полномасштабное освоение месторождения.

Перспективы применения в промышленности газогидратных технологий

Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах XX века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчёты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причём дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удалённых от потребителя.

Однако в последние годы всё большее внимание уделяется транспорту гидратов в неравновесных условиях (при атмосферном давлении). Ещё одним аспектом применения газогидратных технологий является возможность организации газогидратных хранилищ газа в равновесных условиях (под давлением) вблизи крупных потребителей газа. Это связано со способностью гидратов концентрировать газ при относительно низком давлении. Так, например, при температуре +4°С и давлении 40 атм., концентрация метана в гидрате соответствует давлению в 15—16 МПа (150—160 атм.).

Сооружение подобного хранилища не является сложным: хранилище представляет собой батарею газгольдеров, размещённых в котловане или ангаре, и соединённую с газовой трубой. В весенне-летний период хранилище заполняется газом, формирующим гидраты, в осенне-зимний — отдаёт газ при разложении гидратов с использованием низкопотенциального источника теплоты. Строительство подобных хранилищ вблизи теплоэнергоцентралей может существенно сгладить сезонную неравномерность в производстве газа и представлять собой реальную альтернативу строительству ПХГ в ряде случаев.

В настоящее время активно разрабатываются газогидратные технологии, в частности, для получения гидратов с использованием современных методов интенсификации технологических процессов (добавки ПАВ, ускоряющие тепломассоперенос; использование гидрофобных нанопорошков; акустические воздействия различного диапазона, вплоть до получения гидратов в ударных волнах и др.).

Применение газовых гидратов

Газовые гидраты используются для опреснения морской воды. Кроме низких энергетических затрат, имеется достоинство в том, что отсутствуют поверхности тепло- и массобмена. Соответственно, отсутствуют проблемы, присущие мембранным и испарительным технологиям, такие как отложение солей и биологических загрязнителей на мембранах и теплообменниках, износ мембран. Предположительно, гидраты можно применять для хранения газов[15]. Существуют предложения по захоронению на дне океана парниковых газов в виде гидратов.

См. также

Примечания

  1. Ю. А. Дядин, А. Л. Гущин. Газовые гидраты // Соросовский образовательный журнал. — 1998. № 3. С. 55—64.
  2. Соловьёв В. А. Природные газовые гидраты как потенциальное полезное ископаемое. // Российский химический журнал, т. 48, № 3, 2003, с. 59—69.
  3. Коллет Т. С., Льюис Р., Такаши У. Растущий интерес к газовым гидратам. // Schlumberger, Нефтегазовое обозрение, осень 2001, т.6, № 2, с. 38-54.
  4. Макогон Ю. Ф. Природные газовые гидраты: распространение, модели образования, ресурсы. // Российский химический журнал, т. 48, № 3, 2003, с.70-79.
  5. Инербаев Т. М. и др. Динамические, термодинамические и механические свойства газовых гидратов структуры I и II. // Российский химический журнал, т. 48, № 3, 2003, с. 19-27.
  6. de Azevedo Medeiros F.; et al. (2020). “Sixty Years of the van der Waals and Platteeuw Model for Clathrate Hydrates—A Critical Review from Its Statistical Thermodynamic Basis to Its Extensions and Applications”. Chemical Reviews. 120 (24): 13349—13381. DOI:10.1021/acs.chemrev.0c00494.
  7. Кузнецов Ф. А., Истомин В. А., Родионова Т. В. Газовые гидраты: исторический экскурс, современное состояние, перспективы исследований. // Российский химический журнал, т. 48, № 3, 2003, с. 5—18.
  8. Д. Колесов, И. Ронова, А. Талис, И. Яминский, Г. Терещенко. Газовые гидраты – объект исследования и применения // Наноиндустрия : журнал. — 2010. № 1. С. 20—23. (статья)
  9. Сузюмов А. Е. «Плавучие университеты»
  10. Научные открытия России. Научное открытие № 75 «Свойство природных газов находиться в твёрдом состоянии в земной коре».
  11. Япония добудет природный газ из гидратов // Электронный журнал Вокруг газа. — Санкт-Петербург, 2012.
  12. Кирилл Бородин. В Японии начат 1-й в мире эксперимент по добыче метаногидратов. // energo-news.ru. Дата обращения: 22 февраля 2012. Архивировано 24 июня 2012 года.
  13. Япония встала на путь «гидратной революции» «Ведомости» 12 марта 2013
  14. Agency for Natural Resources and Energy. Second Offshore Methane Hydrate Production Test Finishes (англ.). Ministry of Economy, Trade and Industry, Japan. www.meti.go.jp (29 июля 2017). Дата обращения: 7 сентября 2017.
  15. Шагапов В. Ш., Мусакаев Н. Г., Хасанов М. К. Нагнетание газа в пористый резервуар, насыщенный газом и водой. // Теплофизика и аэромеханика, т.12, № 4, 2005, с. 645—656.

Литература

  • С. Ш. Бык, В. И. Фомина. Газовые гидраты. Успехи химии, 1968, Том 37, № 6, Ст. 1097—1135.
  • Истомин В. А., Якушев В. С. Газовые гидраты в природных условиях. М.: Недра, 1992. — 236 с. — ISBN 5-247-02442-7.
  • Гройсман А. Г. Теплофизические свойства газовых гидратов / Отв. ред. Л. М. Никитина; АН СССР, Сиб. отд-ние Якут. фил., Ин-т физ.-техн. пробл. Севера. — Новосибирск: Наука. Сиб. отд-ние, 1985. — 96 с.
  • Российская газовая энциклопедия. Москва. Научное издательство «Большая Российская энциклопедия», 2004. — с. 81-85.
  • Истомин В. А., Якушев В. С., Махонина Н. А., Квон В. Г., Чувилин Е. М. Эффект самоконсервации газовых гидратов — Газовая промышленность, спецвыпуск «Газовые гидраты», 2006. — с. 36-46.
  • Истомин В. А., Нестеров А. Н., Чувилин Е. М., Квон В. Г., Решетников А. М. Разложение гидратов различных газов при температурах ниже 273 К. «Газохимия», № 3 (2), сентябрь-октябрь 2008. — М.: ЗАО «Метапроцесс». — с. 30-44.
  • Громовых С. А. Исследование и разработка технологий строительства скважин в условиях гидратообразования (на примере месторождений Красноярского края). Автореферат диссертации на соискание учёной степени канд. техн. наук. — Тюмень, 2005. — с. 21.
  • W. Wang, C. Bray, D. Adams, A. Cooper (2008). “Methane storage in dry water gas hydrates”. J. Am. Chem. Soc. 130: 11608—11609. DOI:10.1021/ja8048173. PMID 18683923.
  • Дж. Кэрролл. Гидраты природного газа / Пер. с англ. — М.: Издательство «Технопресс», 2007. — 316 с., ил. — ISBN 978-5-903363-05-6

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.