Хронология радио

Хроноло́гия ра́дио — список исторических событий, связанных с радио.

Изучая хронологию радио, нетрудно заметить, что в становление этой области науки и техники был внесён вклад многих людей, среди которых признанные учёные, инженеры и просто энтузиасты. Поэтому становятся бессмысленными словосочетания «изобретатель радио» или «изобретение радио», когда хотят приписать первенство какому-либо лицу или установить начальную дату в этой области человеческого знания. Некорректность словосочетания «изобретение радио» отмечали, например, Н. И. Чистяков[1] и Л. Н. Никольский[2][* 1].

Истоки и развитие

Предыстория радио представлена как цепь событий преимущественно в хронологическом порядке, но разделена на условные этапы, в начале которых, как правило, присутствуют важнейшие события в становлении этой области науки и техники.

Первые антенны и опыты с атмосферным электричеством

1751—1752 — Бенджамин Франклин, американский политический деятель, изобретатель, предложил конструкцию молниеотвода для защиты здания.

1752 — Георг Рихман, российский физик, проводит опыты с атмосферным электричеством. От установленного на крыше его дома железного изолированного шеста была проведена в одну из комнат проволока, к концу которой подсоединялась лейденская банка и крепились металлическая шкала с квадрантом и шёлковая нить. По углу отклонения нити от воздействия атмосферного электричества Рихман делал измерения.

1789 — Луиджи Гальвани, итальянский врач, анатом, физиолог и физик, замечает, что порождённая рядом искра вызывает сокращение лапки препарированной лягушки при прикосновении к ней скальпеля.

1791 — в другом эксперименте Луиджи Гальвани замечает сокращение мышцы препарированной лягушки от молнии. Схема эксперимента включала длинный провод, выведенный на крышу здания и провод, соединяющий мышцу с водой в колодце[6]:36—38.

Обнаружение связи электричества и магнетизма

1820 — Ханс Кристиан Эрстед, датский учёный, физик, обнаружил связь между электричеством и магнетизмом в простом эксперименте. Он продемонстрировал, что проволока, по которой течёт электрический ток, вызывает отклонение магнитной стрелки компаса.

1829 — Джозеф Генри, американский физик, в экспериментах с лейденскими банками обнаружил, что их электрические разряды вызывают намагничивание металлических иголок на расстоянии.

1831 — Майкл Фарадей, английский физик-экспериментатор и химик, начал серию экспериментов, в которых обнаружил явление электромагнитной индукции и дал математическое описание этого явления. Он предположил, что в пространстве вокруг проводника с током действуют особые электромагнитные силы, но не завершил работ, связанных с этим предположением.

1835 — Джозеф Генри конструирует устройство для увеличения дальности срабатывания своего телеграфного аппарата. Устройство представляло собой электромагнитный контактный коммутатор электрической цепи, осуществляющий усиление импульсов тока, поступающих на силовой электромагнит телеграфа. Подобное устройство впоследствии получило название реле[7].

1842 — Джозеф Генри публикует свои экспериментальные результаты, показывающие колебательный характер разряда лейденской банки[8], и описывает, как порождённая искра может намагнитить иглу, окружённую катушкой, на расстоянии 70 м. Он также описывает, как удар молнии на расстоянии 13 км намагничивает иглу, окруженную катушкой, — эффект, который был, скорее всего, вызван электромагнитной волной. В то время Генри считал, что оба эти эффекта из-за электромагнитной индукции.

1845 — Майкл Фарадей ввёл понятие электромагнитное поле.

1851 — Генрих Румкорф, немецкий изобретатель, механик, владелец мастерской по изготовлению физических приборов в Париже, запатентовал своё устройство для получения импульсов высокого напряжения, известное под названием катушка Румкорфа.

1856 — Сэмюэл Варлей, измеряя электрическое сопротивление смеси металлических опилок с угольным порошком, обнаружил скачкообразное уменьшение его при достижении некоторого порогового напряжения. При встряхивании смеси сопротивление восстанавливалось. Он предложил трубку с контактами по концам, заполненную угольным или металлическим порошком, в качестве предохранителя в телеграфных устройствах от мощных разрядов атмосферного электричества[6]:42—43[* 2].

Появление теории электромагнитного поля

1861—1865 — Джеймс Максвелл, британский физик, математик и механик, провёл ряд экспериментов с электромагнитными волнами и на их основе создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений.

1866 — Малон Лумис, американский дантист, заявил о том, что открыл способ беспроводной связи. Связь осуществлялась при помощи двух электрических проводов, поднятых двумя воздушными змеями. Один из проводов с размыкающим от земли устройством был передающим, второй — приёмным. При размыкании цепи передающего провода отклонялась стрелка гальванометра в цепи приёмного провода. Лумис установил, что для успешной передачи сигнала имеет значение одинаковая длина проводов[10], возможно полагая, что сигнал передаётся от конца провода через слой электрически заряженного воздуха.

1868 — Малон Лумис заявил, что повторил свои эксперименты перед представителями Конгресса США, передав сигналы на расстояние 14—18 миль. В пояснительной записке он указал, что «колебания или волны, распространяясь от источника возмущения вдоль поверхности Земли подобно волнам в озере, достигают удаленный пункт и вызывают колебания в другом проводнике, которые могут быть обнаружены индикатором»[10].

1872 — 30 июля Малон Лумис получил патент США № 129971 «Улучшение в телеграфии» на беспроводную связь. Хотя президент США подписал закон о финансировании опытов Лумиса, финансирование так и не было открыто[10]. Достоверных данных о характере экспериментов Лумиса, равно как и чертежей его аппаратов, не сохранилось. Американский патент также не содержит детального описания устройства.

Приёмник с видимым искрообразованием

1876 — Томас Эдисон, американский изобретатель и предприниматель, сконструировал приёмник электромагнитных колебаний для демонстрации возможности передачи электрической энергии без проводов. В зачернённой изнутри коробке размещались в линию два заострённых стержня с зазором между острыми концами. Один из стержней за пределами коробки оканчивался полым металлическим шаром, второй имел винт для регулировки зазора. Искра между концами стержней, возникавшая от разряда индукционной катушки, наблюдалась на расстоянии около 30 м[6]:40.

1878—1880 — Дэвид Хьюз, английский и американский изобретатель, в своих экспериментах соединяет угольный микрофон собственной конструкции с телефоном и обнаруживает, что создаваемые на некотором расстоянии искровые разряды от индукционной катушки порождают щелчки в телефоне[8]. Экспериментируя с заземлением передающего и приёмного устройств, а также с подобием антенны в передающем устройстве, он прослушивает щелчки на расстоянии более 400 м. В 1880 году демонстрирует свои опыты Королевскому обществу, но его убеждают, что это всего лишь электромагнитная индукция. На самом деле применяемый Хьюзом угольный микрофон проявлял нелинейные свойства, выполняя функцию детектора высокочастотных колебаний[11][9].

1883 — Джордж Фрэнсис Фицджеральд, ирландский профессор, предложил использовать эфирные колебания в качестве источника максвелловских волн. Однако он не представлял, как эти волны зарегистрировать, а потому ограничился чистой теорией.

1884 — Фемистокл Кальцекки-Онести, итальянский физик, исследует и более точно измеряет электрическое сопротивление металлических опилок в эбонитовой и стеклянной трубке. Подобная трубка впоследствии получила наименование когерер. Под действием электрических процессов при размыкании цепи, содержавшей индуктивность и трубку с опилками, сопротивление опилок значительно уменьшалось[9].

1885 — Эдисон подаёт патентную заявку на «передачу без проводов сигналов азбуки Морзе», например, для связи движущего поезда со станциями или в мореплавании, посредством, как объяснял автор, «электростатической индукции». В 1886 году Эдисон подаёт заявку на телеграфную связь берега с кораблём и между кораблями через морскую воду. Патент США № 465971 «Способ передачи электрических сигналов» был получен в 1891 году[12].

Установка для передачи и приёма электромагнитных волн

Схема экспериментальной установки Герца, 1887 год

1886—1888 — Генрих Герц, немецкий физик, экспериментально подтвердил теорию Максвелла. Для этого им были сконструированы передатчик, включающий в себя источник питания постоянного тока, катушку Румкорфа и антенну направленного действия — симметричный вибратор, и простейший приёмник, представляющий собой рамочную антенну (имеющую тоже направленное действие и называемую иногда резонатором) с малым искровым промежутком, выполнявшим функции индикатора (детектора) волн[13]. Другой вариант приёмника представлял вибратор, как у передатчика, но с малым искровым промежутком[14]. Герц продемонстрировал, что создаваемое электромагнитное поле обладает всеми свойствами волн, которые стали называть электромагнитными волнами, или «волнами Герца». Он убедился в том, что законы отражения и преломления электромагнитных волн невидимого спектра подчиняются законам геометрической оптики видимого спектра. Герц показал, что уравнения, описывающие электромагнитное поле, можно переформулировать в виде дифференциального уравнения в частных производных, названного волновым уравнением.

1889 — Оливер Лодж, английский физик и изобретатель, экспериментирует с аналогичными приборами из установки Герца, при этом в качестве антенны приёмника он использует не рамку, а вибратор, как в передатчике. Для повышения чувствительности приёмника он так уменьшает искровой промежуток у вибратора приёмника, что после электромагнитного воздействия электроды вибратора замыкаются (сцепляются). Для размыкания электродов требовалось лёгкое встряхивание. Подключив к электродам вибратора источник питания и электрический звонок, Лодж обеспечил звуковую индикацию принятой электромагнитной волны[15].

Приёмник электромагнитных волн на основе когерера

1890 — Эдуард Бранли, французский физик и инженер, изобрёл прибор для регистрации электромагнитных волн, названный им «радиокондуктор». Прибор представлял из себя уже известную эбонитовую трубку, внутри которой находились металлические опилки («трубка Бранли», позднее — когерер), но он был включён в созданную Бранли схему с источником питания, гальванометром и ограничивающими ток проволочными резисторами. Для получения электрических разрядов использовалась электрофорная машина или катушка Румкорфа. Гальванометр реагировал на разряды катушки Румкорфа на расстоянии более 20 м, при ручном встряхивании радиокондуктора стрелка гальванометра возвращалась в исходное положение. В своих опытах Бранли использовал антенны в виде отрезков проволоки, подключая их к одному из выводов радиокондуктора[9][6]:43—47.

1890 — Лодж признал «трубку Бранли» наиболее подходящим индикатором «волн Герца» из имеющихся на то время. Он дал ей наименование «когерер» (лат. cohaerere — сцепляться) и ввёл в свою схему с приёмным вибратором Герца вместо искрового промежутка, получив более устойчивую и надёжную работу приёмника[15].

1890 — Яков Оттонович Наркевич-Иодко, российский учёный, изобретатель, применил для регистрации грозовых разрядов прибор, имеющий антенну, заземление и телефонную трубку. Прибор позволял регистрировать электрические разряды в атмосфере на расстоянии до 100 км[16][* 3].

Передатчик с резонанс-трансформатором

1891, 25 апреля — Никола Тесла, инженер, изобретатель в области электротехники и радиотехники, получил патент США № 454622 на устройство для получения электромагнитных колебаний. В состав устройства входили: источник питания постоянного тока, управляющий ключ, катушка Румкорфа, электрический конденсатор, разрядник и высоковольтный трансформатор. Впервые в передатчике электромагнитных колебаний было реализовано явление электрического резонанса[6]:47—48.

1891—1892 — Уильям Прис, главный инженер британского почтового ведомства, успешно экспериментировал с индукционной передачей телеграфных сигналов между прибрежными приёмно-передающими станциями (в том числе через Бристольский залив), расположенными на расстоянии друг от друга около 5 км[6]:88.

Системное описание принципов беспроводной связи

1892 — Уильям Крукс, английский химик и физик, публикует статью под названием «Некоторые возможности применения электричества», в которой он впервые системно описал принципы передачи информации с помощью электромагнитных волн. Некоторые авторы считают, что Уильям Крукс открыл миру радио как науку[6]:17—25. Публикация считается отправной для истолкования понятия «радио». Такие заявленные по тексту термины, как генерирование, диапазон, чувствительность, избирательность и прочие, впоследствии стали общеупотребительными[19]. В статье Крукс, в частности, пишет (перевод Л. В. Гессен)[20]:

Лучи света не могут проникать ни через стену, ни, как мы слишком хорошо знаем, через лондонский туман. Но электрические колебания, о которых я говорил, с длиной волны в один ярд и более, легко проникнут через такие среды, являющиеся для них прозрачными. Здесь открывается поразительная возможность телеграфирования без проводов, телеграфных столбов, кабелей и всяких других дорогостоящих современных приспособлений. Допуская несколько приемлемых постулатов, мы можем рассматривать всё это как находящееся в области возможного осуществления. (…)

Это не просто грёзы мечтательного учёного. Всё необходимое, что нужно для реализации этого в повседневной жизни, находится в пределах возможностей открытия и всё это так разумно и ясно в ходе тех исследований, которые деятельно ведутся сейчас в каждой европейской столице, что в любой день мы можем услышать о том, как из области рассуждений это перешло в область неоспоримых фактов.

1893 — Элиу Томсон, американский инженер и изобретатель, запатентовал конструкцию дугового генератора незатухающих электромагнитных колебаний с частотой до 50 кГц[21].

Резонансные передатчик и приёмник Теслы

1893 — Тесла в США читает лекции «О свете и других высокочастотных явлениях» слушателям Института Франклина в Филадельфии и Национальной ассоциации электрического освещения в Сент-Луисе. Он демонстрирует изобретённую им в 1891 году техническую систему с резонанс-трансформатором, предполагая использование подобных устройств для беспроводного освещения и электрораспределительных систем и, как побочный аспект, для беспроводной связи. Тесла показал в деталях принципы передачи электрических сигналов через эфир. Существует мнение, что в Сент-Луисе Тесла представил первую публичную демонстрацию настроенных высокочастотных колебаний для беспроводной связи[22]. Приёмником электромагнитных колебаний служила настроенная в резонанс с антенной катушка с ярко вспыхивавшей при наличии сигнала трубкой Крукса (см. Катодные лучи)[23].

1893 — Аугусто Риги, итальянский физик, профессор физики Болонского университета, подтверждает исследования и выводы Герца относительно свойств электромагнитных волн. Он усовершенствовал передающую часть экспериментальной установки Герца с целью повышения частоты электромагнитных колебаний и защиты элементов от обугливания и обгорания при образовании искры[24].

Всплеск изобретательской деятельности в области радио

1894, 1 июня — Лодж читает лекцию, посвящённую памяти Генриха Герца, умершего 1 января 1894 года. В ходе лекции он демонстрирует оптические свойства электромагнитных колебаний («волн Герца»), в том числе передачу их на небольшое расстояние, используя в качестве устройства для обнаружения колебаний (детектора) улучшенную версию «трубки Бранли», которой Лодж дал наименование когерер. Материалы лекции под наименованием «Работы Герца» были опубликованы в распространяемых во многих странах мира журналах «Nature» и «Electrician» и неоднократно переиздавались впоследствии, что явилось стимулом для изобретательской деятельности в разных странах. Например, Риги после публикации работ Лоджа проводил эксперименты уже с когерером и электрическим звонком, включёнными последовательно в цепь приёмного резонатора Герца[24].

1894, 14 августа — Лодж демонстрирует опыты по передаче и приёму электромагнитных волн в театре Музея естественной истории Оксфордского университета. При демонстрации сигнал был отправлен из лаборатории в соседнем Кларендоновском корпусе и принят прибором в театре на расстоянии 40 м. Для встряхивания когерера с целью периодического восстановления его чувствительности Лодж впоследствии использовал или звонок, или заводной пружинный механизм с молоточком-зацепом. Есть сведения[25], что в 1894 году Лодж построил систему, которая передавала сигналы без проводов с помощью «волн Герца» на расстояние более 130 м. Лодж регулировал настройку своего прибора путём изменения собственной индуктивности антенного контура. Он продемонстрировал, что регулировка длины волн и, таким образом, частоты в контуре выполнялась путём изменения одного или обоих параметров — индуктивности и ёмкости в антенном контуре[25].

1894 — Джагадиш Чандра Боше, бенгальский учёный-энциклопедист, основываясь на опубликованных работах Лоджа, использует электромагнитные волны для воспламенения пороха и включения звонка на расстоянии и публично демонстрирует свои эксперименты в Калькутте. Кроме того, чуть позднее (1895) Боше изобрёл ртутный когерер, не требующий встряхивания[26].

Приёмник со встряхиванием когерера от принятого сигнала

1895, 25 апреля (7 мая) — Александр Попов, русский физик и электротехник, изобретатель, на заседании Русского физико-химического общества (РФХО) в Санкт-Петербурге читает лекцию «Об отношении металлических порошков к электрическим колебаниям», на которой, воспроизводя опыты Лоджа c электромагнитными колебаниями, демонстрирует прибор, схожий в общих чертах с прибором Лоджа. При этом Попов и его помощник П. Н. Рыбкин, внесли в конструкцию усовершенствования. Особенностью прибора стал молоточек, встряхивавший когерер («трубку Бранли») и работавший не от часового механизма, как у Лоджа, а от принятого сигнала[2]. Кроме того, было введено реле, повышающее чувствительность и стабильность работы прибора. Для получения электрических разрядов при демонстрации использовалась электрофорная машина. Согласно протоколу заседания РФХО прибор Попова был предназначен «для показывания быстрых колебаний в атмосферном электричестве»[6]:63. В мае 1895 года прибор был приспособлен для улавливания атмосферных электромагнитных волн на метеостанции Лесного института. Название прибора «разрядоотметчик» (впоследствии, «грозоотметчик») дал товарищ и коллега Попова по РФХО, основатель кафедры физики Лесного института Д. А. Лачинов, который в июле 1895 года во 2-м издании своего курса «Основ метеорологии и климатологии» впервые изложил принцип действия «разрядоотметчика Попова»[6]:66.

1895 — Гульельмо Маркони, итальянский физик и предприниматель, проводит работы по созданию системы передачи и приёма телеграфного сигнала с использованием «волн Герца». Приём сигнала в пределах нескольких сотен метров был достигнут им весной 1895 года[6]:75.

1895 — Эрнест Резерфорд, британский физик, опубликовал результаты своих экспериментов по детектированию радиоволн на расстоянии 1,2 км от источника. Для приёма радиоволн Резерфорд дополнил резонатор Герца катушкой из тонкой проволоки с намагниченной стальной иглой внутри. Под действием принятых радиоволн игла размагничивалась — это показывал магнитометр.

1896, январь — Попов публикует статью в популярном, в том числе среди иностранных учёных, журнале РФХО[6]:65. В статье (датированной декабрём 1895 года) приведена полная схема и подробное описание принципа действия прибора Попова. В статье говорится, что прибор на открытом воздухе принимал электромагнитные колебания от «большого» вибратора Герца с масляным разрядником на расстоянии около 60 м. В заключение автор выражает надежду, что «прибор, при дальнейшем усовершенствовании его может быть применён к передаче сигналов на расстояния при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией»[2].

1896, 2 апреля — Владимир Скобельцын, ассистент профессора физики (с 1898 года профессор физики), делает доклад в Электротехническом институте в Санкт-Петербурге о приборе Попова с демонстрацией аналогичного прибора собственного изготовления. Схема прибора Попова была дополнена двумя проволочными резисторами, подключёнными к выводам когерера последовательно с обмоткой реле. Источник электромагнитных колебаний — катушка Румкорфа с вибратором Герца — был размещён на расстоянии около 40 м в соседнем здании[6]:66—73.

Маркони подаёт свою первую заявку на патент

1896, 2 июня — Маркони подаёт заявку на получение патента Великобритании с формулировкой «Усовершенствования в передаче электрических импульсов и сигналов и в аппаратуре для этого».

1896, 2 сентября — Маркони демонстрирует свою аппаратуру в местечке Солсбери под Лондоном при большой аудитории с участием представителей армии и флота. С трёхметровой наружной антенной приёмники могли ловить сигналы на расстоянии до 0,5 км. Передатчик и приёмник с параболическими рефлекторами показали дальность связи 2,5 км[27].

1896 — Джагадиш Чандра Боше отправился в Лондон для проведения цикла лекций и встретился с Маркони, который проводил эксперименты по беспроводной связи для британского почтового ведомства.

1897, 2 марта — Маркони оформляет дополнение к патентной заявке от 2 июня 1896 года.

1897, 31 марта — Попов читает лекцию в Кронштадтском морском собрании при большом стечении военных и гражданских лиц и демонстрирует передачу и приём сигнала в пределах здания[6]:121—122.

1897, май — Прис проводит сравнительные испытания аппаратуры Маркони и собственной аппаратуры, основанной на индукционной передаче сигналов. Испытания проводились при трансляции сигналов через Бристольский канал в Англии, причём впервые — над водной поверхностью для аппаратуры Маркони. Они показали полное превосходство воздушной беспроводной телеграфии. Попутно выяснилось, что электромагнитные колебания распространяются над водой с меньшими потерями, чем над землей. Поэтому и был установлен новый очередной рекорд дальности связи 14 км[28][29].

1897 — Карл Фердинанд Браун, немецкий физик, изобретатель, совершенствует схему искрового передатчика. Он вводит замкнутый настраиваемый контур в генерирующей части передатчика, разделяя его с передающей частью (антенной) посредством индуктивной связи.

1897, 2 июля — Маркони получает патент Великобритании № 12039 «Усовершенствования в передаче электрических импульсов и сигналов и в аппаратуре для этого» с приоритетом от 2 июня 1896. Патент Маркони представляет двухконтурную систему, в которой высокочастотные колебания, возникшие в передающем антенном контуре, обнаруживаются прибором, подключённым непосредственно к приёмному антенному контуру[30]. Передатчик включал в себя: передающую антенну, осциллятор Риги[24], источник питания постоянного тока и телеграфный ключ. Приёмник включал в себя: приёмную антенну, вакуумный когерер с металлическим порошком из смеси серебряных и никелевых опилок с добавлением ртути, дроссельные катушки, разделяющие высокочастотную и низкочастотную часть приёмной цепи, приёмное реле для управления телеграфным аппаратом, электромеханический ударник для встряхивания когерера от принятого сигнала и два источника питания постоянного тока[6]:84—186.

Беспроводная связь Маркони на расстоянии 18 км

1897, 6 июля — Маркони на итальянской военно-морской базе Ла Специяна передаёт своей аппаратурой фразу «Viva l’Italia» («Да здравствует Италия») на расстояние 18 км[28].

1897, 7 октября — Адольф Слаби, немецкий электротехник, профессор электротехники Шарлоттенбургского технического университета, установил радиосвязь на расстоянии 21 км между Шёнебергом и Рангсдорфом (пригород Берлина). Решающим усовершенствованием в таком достижении было не качество искрового передатчика и передающей антенны, как у Маркони, а введение индуктивности в антенную цепь приёмника для повышения его чувствительности[6].

1897, 19 октября — Попов выступает с докладом «О телеграфировании без проводов» в Электротехническом институте Санкт-Петербурга[* 4]. В конце доклада он признаёт: «Здесь собран прибор для телеграфирования. Связной телеграммы мы не сумели послать, потому что у нас не было практики, все детали приборов ещё нужно разработать»[6]:137—139.

1897, 5 ноября — Эжен Дюкрете, французский предприниматель и изобретатель, владелец (с 1864 года) фирмы по изготовлению гальванометров, вольтметров, катушек Румкорфа, прерывателей и других электрических приборов — используя созданные им приборы для беспроводной телеграфии[32], устанавливает связь между Эйфелевой башней и зданием Пантеона на расстоянии 4 км. 19 ноября 1897 года он демонстрирует работу этих устройств на заседании Французского физического общества. С января 1898 года Дюкрете по своей инициативе начинает переписку с Поповым, в сотрудничестве с которым он был заинтересован[17]:33, 43—45, 49.

1897, ноябрь — Маркони строит радиостанцию на острове Уайт в Англии.

1897, 19 декабря — газета «Петербургский листок» сообщает о беспроводной передаче телеграфного сигнала Поповым 18 декабря 1897 года из здания химической лаборатории Петербургского университета в аудиторию физического кабинета в другом здании, где проходило заседание РФХО. В заметке сообщалось, что после того, как ассистент Попова Рыбкин ушёл на «станцию отправления», «ровно через 10 минут <…> на ленте обычной телеграфной азбукой обозначилось слово „Герц“»[33][2][* 5].

1897, 23 декабря — в Петербургском университете в присутствии высшего морского начальства Поповым была повторена лекция «О телеграфировании без проводников». Доклад закончился успешным приёмом сигнала из четырёх букв от передающей станции на расстоянии около 230 м[34].

Промышленное производство систем беспроводной связи

1898 — Маркони открыл первый завод по производству своей аппаратуры в Англии, на котором работало около 50 человек. Исследовательская группа Маркони усовершенствовала трансформаторное подключение к антенному контуру Теслы, введя между трансформатором и когерером разделительный конденсатор, что повысило чувствительность и избирательность приёмника. Схема с таким включением конденсатора получила название «джиггер». Патентная заявка на усовершенствование поступила 1 июня 1898 года, патент Великобритании № 12326 был получен 1 июля 1899[6]:91—92.

1898, 16 августа — Лодж получает патент № 609154, в описании которого предлагалось «использовать настраиваемую индукционную катушку или антенный контур в беспроводных передатчиках или приемниках, или в обоих устройствах»[12].

1899 — П. Н. Рыбкин и Д. С. Троицкий[* 6] на аппаратуре, изготовленной в «Опытной механической и водолазной мастерской» Е. В. Колбасьева, обнаруживают возможность приёма импульсов искрового телеграфа на телефон (на слух) при недостаточном для срабатывания когерера уровне сигнала[* 7]. Приёмник по такой схеме был запатентован Поповым в Великобритании, во Франции и в России и получил название «телефонный приёмник депеш»[35]. В августе — сентябре 1899 года Попов, Рыбкин и Колбасьев участвовали в испытаниях трёх станций беспроводного телеграфа, приобретённых у фирмы Дюкрете и установленных на кораблях Черноморского флота[17]:34, 46.

1899 — Джагадиш Чандра Боше объявил об изобретении «железо-ртутно-железного когерера с телефонным детектором» в докладе, представленном в Лондонское королевское общество.

1900 — аппаратура фирмы Дюкрете обеспечивала беспроводную связь для содействия операции по спасению броненосца «Генерал-адмирал Апраксин», севшего на камни у острова Гогланд[36]. Одна станция была установлена на острове Гогланд, другая — на расстоянии около 46 км на острове Кутсало (вблизи Котки). В аппаратуре использовались опытные образцы «телефонных приёмников депеш» для приёма телеграфного сигнала на слух[32]. В работах принимали участие Попов, Рыбкин и А. А. Реммерт. Приём на Гогланде одного из первых сообщений ледоколу «Ермак» помог спасению финских рыбаков с оторванной льдины в Финском заливе.

1900 — Морской технический комитет инициировал создание при Кронштадтском порте мастерской по изготовлению, ремонту и проверке приборов для станций беспроволочного телеграфа. Руководителем мастерской был назначен Е. Л. Коринфский[37]:173.

Первые опыты по беспроводной передаче звука

1900 — Реджинальд Фессенден, канадский и американский изобретатель, начинает эксперименты по беспроводной передаче звуковых сигналов. Он впервые поместил в передатчике угольный микрофон в цепь искрового генератора и антенны. Метод стал называться «амплитудная модуляция» (АМ). В приёмнике отсутствовали реле и когерер — для приёма сигнала использовался электролитический детектор. Звуковой сигнал принимался с большими искажениями, поэтому в дальнейшем Фессенден отказался от искрового генератора и начал обдумывать систему передачи на основе незатухающих электромагнитных колебаний[19].

1900, апрель — Маркони получает патент Великобритании № 7777 на «джиггерную» (резонансную) схему передатчика. Однако его аналогичная патентная заявка в США была отклонена со ссылкой на существующее техническое решение Теслы, защищённое патентом в 1891 году.

1900 — аппаратура Попова, выпускаемая фирмой Дюкрете, была дополнена телефонным приёмником депеш для приёма телеграфных сигналов на слух. На табличке серийного изделия были указаны фамилии «Попов — Дюкрете» как компаньонов.

1901 — Маркони утверждает, что принял в Сент-Джонсе (Ньюфаундленд) телеграфный сигнал, переданный из Корнуолла (Великобритания). Однако возможность такого приёма с имевшимся на тот момент оборудованием у Маркони подвергалась сомнению и обсуждается до сих пор[38][39].

1901 — Тесла предложил в своём британском патенте использовать в приёмном устройстве прерыватель тока (тиккер), обеспечивающий приём на слух телеграфных сигналов от передатчика незатухающих электромагнитных колебаний[21].

Дуговой генератор незатухающих колебаний Поульсена

1902 — Вальдемар Поульсен, датский инженер, запатентовал конструкцию дугового генератора незатухающих электромагнитных колебаний с использованием специально подобранной газовой среды для увеличения частоты колебаний[21].

1903 — башня «Уорденклиф», которую спроектировал Тесла, близка к завершению. Существуют различные теории относительно того, как Тесла намеревался построить свою беспроводную систему связи (сообщалось о мощности в 200 кВт). Тесла утверждал, что башня «Уорденклиф» как часть мировой системы передатчиков позволила бы обеспечить надёжный многоканальный приём и передачу информации, общемировую навигацию, синхронизацию часов, а также глобальную систему определения координат[40].

1903 — Международная конференция по беспроволочному телеграфированию рекомендует к употреблению термин «радиотелеграфия» вместо применявшихся терминов «беспроводная связь» и «беспроводная сигнализация»[2].

Искровая телеграфия и начало радиовещания

Первая двусторонняя трансатлантическая связь

Роторно-искровой передатчик. 1906 г.
Схема передатчика с искровым разрядником

1906, 14 января — Реджинальд Фессенден осуществил первую двустороннюю трансатлантическую телеграфную связь между построенной станцией в Брант Роке (штат Массачусетс) и идентичной станцией в Махриханише (Шотландия) с использованием своего роторно-искрового передатчика. Телеграммы шли в обе стороны без ошибок, однако попытки транслировать через океан музыку и речь были безуспешными. В ходе экспериментов выяснилось, что длинные волны менее подвержены затуханиям в тёмное время суток, поэтому для сверхдальней связи оказался более благоприятным зимний период, когда дни короче. Связь действовала до 5 декабря 1906 года, после чего на европейском берегу порывом ветра снесло антенную мачту. Накопленный Фессенденом опыт впоследствии помог Маркони избежать многих ошибок при введении в эксплуатацию системы телеграфной связи между Америкой и Европой[19].

Первая радиопередача звукового сигнала

1906, 24 декабря — Фессенден, используя электромашинный генератор переменного тока Эрнста Александерсона (альтернатор Александерсона) частотой около 50 кГц и ранее построенную антенну в Брант Роке высотой 128 м, осуществил первую радиопередачу звукового сигнала[41]. Корабли в море услышали трансляцию игры Фессендена на скрипке и чтение отрывка из Библии.

1907 — Маркони создал первую постоянно действующую трансатлантическую линию беспроводного телеграфа от Клифдена (Ирландия) до Глейс Бей (Новая Шотландия).

1909 — Маркони и Карл Фердинанд Браун были удостоены Нобелевской премии по физике за «выдающийся вклад в развитие беспроводной телеграфии».

Появление термина «broadcasting»

1909, апрель — Чарльз Геррольд, американский изобретатель, преподаватель электроники из Сан-Хосе, Калифорния, построил радиостанцию. В ней использовалась технология с искровым разрядником, но несущая частота модулировалась голосом, а затем и музыкой. Эта радиостанция, названная «San Jose Calling», впоследствии превратилась в радиостанцию KCBS в Сан-Франциско. Геррольд, сын фермера из долины Санта-Клара, ввёл термины «узкое распространение» (narrowcasting) и «широкое распространение» (broadcasting), соответственно, для определения радиопередач, предназначенных для одного получателя, например, на борту судна, или для широкой аудитории. В английском языке термин «broadcasting» использовался в сельском хозяйстве и означал разбрасывание семян в разных направлениях. В дальнейшем этот термин прочно связался с радио (в русском языке используется термин «радиовещание»[* 8]), а затем и с телевидением. Геррольд не претендовал на первенство в передаче человеческого голоса по радио, но он претендовал на первенство в организации радиовещания. Чтобы радиосигнал распространялся во всех направлениях, он разработал всенаправленные антенны, которые монтировались на крышах зданий в Сан-Хосе. Геррольд также претендовал на первенство в допущении рекламы в радиовещании, хотя реклама, как правило, предполагает платные объявления. Он изменил интерес населения к местному магазину звукозаписи проигрыванием записей на своей станции.

1912 — в ночь с 14 на 15 апреля затонул трансатлантический лайнер «Титаник». Беспроводная связь обеспечила передачу с тонущего лайнера сигнала бедствия (SOS). В ходе расследования катастрофы в США был инициирован законопроект и в 1912 году был принят федеральный закон, предписывающий всем радиостанциям иметь лицензию правительства США, а также обязывающий постоянный мониторинг морскими судами частот передачи сигнала бедствия и поддержание круглосуточной связи с ближайшими судами и береговыми радиостанциями.

1913 — Маркони положил начало первой дуплексной трансатлантической беспроводной связи между Северной Америкой и Европой.

1913 — созвана Международная конференция по охране человеческой жизни на море, которая подготовила соглашение, требующее обеспечения круглосуточной работы судовых радиостанций.

От электронных ламп до транзисторов

1906 — Роберт фон Либен, австрийский инженер-физик, запатентовал «катодно-лучевое реле» с магнитным отклонением луча, сконструированное им на основе катодной трубки Брауна — Венельта. В его патенте впервые сформулирован принцип усиления электрического сигнала в вакуумной электронной лампе. Однако эта лампа имела (кроме катода и анода) ещё и магнитную катушку, что не позволяло назвать её трёхэлектродной лампой, которая впоследствии стала доминирующей в радиотехнике[43].

1907 — Ли де Форест, американский инженер, получил патент на трёхэлектродную лампу, которую он назвал «аудион». Аудион Фореста не только детектировал принимаемый сигнал, но и давал некоторое усиление. Идея Фореста с третьим, управляющим электродом послужила толчком к дальнейшему развитию вакуумных электронных ламп. Например, Роберт фон Либен, узнав об изобретении аудиона, отказался от магнитной катушки и начал вводить в свои «катодные реле» управляющий электрод. Электронные лампы того времени были «мягкие», то есть с относительно малым разрежением внутри лампы, из-за чего в их работе большую роль играла вторичная ионизация, отрицательно влияющая на электрические характеристики[43].

1912 — почти одновременно предложили схемы ламповых генераторов незатухающих колебаний австриец Мейснер и англичанин Генри Роунд, а вслед за ними канадец Колпитц и американец Хартли. Такие генераторы давали значительно более чистый сигнал, чем используемые тогда искровые передатчики с электромашинным генератором[44].

1913, октябрь — Эдвин Армстронг, американский радиоинженер и изобретатель, подает заявку на патент «Система для беспроводного приема» (англ. Wireless Receiving System), где описывается изобретённый им регенеративный радиоприёмник, обеспечивающий большое усиление за счёт положительной обратной связи[44].

1914, октябрь — Армстронг получает патент на своё изобретение, которое быстро приобрело известность среди радиолюбителей как «обратная связь Армстронга»[44].

1915 — Джон Реншоу Карсон, теоретик ранних систем связи, изобрёл амплитудную модуляцию с одной боковой полосой для передачи нескольких телефонных разговоров по одной линии связи[45]. Это изобретение не использовалось в радиовещании из-за необходимого усложнения бытовых радиоприёмников, однако впоследствии стало широко применяться в профессиональной и любительской радиосвязи, а также в системах многоканальной связи и в телевизионном вещании.

1917 — Люсьен Леви (en:Lucien Lévy), французский инженер и промышленник, запатентовал принцип преобразования частоты принимаемого сигнала в промежуточную частоту, сигнал с этой частотой выделялся колебательным контуром, а затем детектировался[44].

1918 — Армстронг, воспользовавшись идеей Леви, установил на входе приёмника преобразователь частоты и получил значительный выигрыш в усилении сигнала, так как ламповый усилитель приёмника стал работать на более низкой промежуточной частоте. Армстронг назвал этот приёмник супергетеродином[44].

1920 — начало АМ-радиовещания (США)[46].

1922 — на вооружение в Красной армии была принята первая ламповая радиостанция — «АЛМ» («Армейская ламповая Минца»). Её создателем был А. Л. Минц[47].

1924 — начало АМ-радиовещания в СССР[46]. Постановлением СНК СССР от 28 июля впервые установлен порядок пользования «частными приёмными радиостанциями». На установку радиоприёмника отныне требовалось разрешение органов Наркомата почт и телеграфов, за пользование им взималась абонентская плата. Вводились некоторые ограничения, например, запрещалось записывать и распространять содержание служебных радиопередач и передач иностранных радиостанций[48].

1926 — в СССР узаконена любительская радиосвязь. Постановлением СНК от 5 февраля установлен порядок регистрации и эксплуатации не только приёмных, но и передающих частных радиостанций (ранее изданное постановление от 28 июля 1924 года утратило силу)[49].

1928, 12 июня — вышла в эфир первая телевизионная станция WCFL с механической развёрткой[50]. Её создателем был Улисс Санабриа[51].

1929, 19 мая — впервые для передачи сигналов изображения и звука использован один диапазон радиоволн (станция WCFL передаёт изображение, а радиостанция WIBO — звуковое сопровождение).

1929 — первое собрание Международного консультативного комитета по радио (МККР), на котором был принят ряд рекомендаций по вопросам измерений частоты и стабильности передатчиков, распределения полос частот, ограничения мощности передатчиков, исключения из использования искровых передатчиков[52].

1930 — компания Motorola выпустила первый автомобильный радиоприёмник.

1931 — начало регулярного телевизионного вещания в СССР на средних волнах с механической развёрткой[53].

1933 — патрульные полицейские автомобили в г. Байонне (Нью-Джерси, США) впервые оснащены двусторонней радиосвязью.

SCR-536

1933 — Армстронг предложил использовать для радиовещания широкополосную частотную модуляцию (ЧМ), получив к этому времени четыре патента по результатам своих исследований[44][* 9]. Широкополосная ЧМ уменьшала влияние помех от атмосферного электричества или работающего электрооборудования (например в автомобиле)[44].

1941 — компания Motorola начала серийное производство радиостанции SCR-536 — первого носимого приёмопередатчика, который можно было держать в одной руке.

1941 — начало ЧМ-радиовещания (США)[46].

1946 — начало ЧМ-радиовещания в СССР[46]. Первая радиовещательная станция в Москве на метровых волнах с частотной модуляцией (МВ ЧМ)[55] имела мощность 1 кВт на частоте 46,5 МГц[56].

1950 — началось регулярное телевизионное вещание в цвете (США). С 1951 по 1953 год производство цветных телевизоров в США было законодательно запрещено (формально — для экономии стратегического сырья в связи с войной в Корее).

1952 — 7 ноября Ленинградский телецентр провёл первую пробную цветную передачу. Экспериментальное цветное вещание в Ленинграде и Москве продолжалось до 1955 года и было свёрнуто ввиду бесперспективности применявшейся системы последовательной передачи цветов. Передачи можно было смотреть в нескольких особых ателье, где были установлены специальные телевизоры.

1954 — американская фирма Regency выпустила на рынок первый коммерческий транзисторный радиоприёмник TR-1.

1961 — число телевизионных приёмников в мире достигло 100 миллионов[57].

1963, 17 января — первый сеанс спутникового радиовещания между США и Южной Америкой, 12-минутная магнитофонная запись была передана из Натли (Нью-Джерси) через спутник-ретранслятор на мобильную радиостанцию в Рио-де-Жанейро (Бразилия)[58].

1963 — запущен первый спутник радиосвязи TELSTAR.

1967 — в СССР введена в эксплуатацию спутниковая система дальней космической радиосвязи «Орбита», обеспечивающая, кроме прочего, передачу общесоюзной программы телевидения для регионов Сибири и Дальнего Востока[46].

1987 — запущен комплекс спутников, обеспечивающих работу спутниковой навигационной системы GPS.

См. также

Примечания

Комментарии
  1. Утвердившееся в отечественной и зарубежной литературе словосочетание «изобретение радио» было введено в 1945 году советским учёным-радиотехником А. И. Бергом[3][4]. В 1925 году в СССР использовалось сочетание слов «изобретение радиотелеграфа» или «изобретение беспроволочного телеграфа»[5].
  2. Подобное устройство в усовершенствованном виде для обнаружения слабых электрических колебаний впоследствии получило наименование когерер[9].
  3. Из письма Блонделя (инициировавшего среди учёных споры о приоритете в изобретении радио[17]:53) от 2 декабря 1898 года следует, что Наркевич-Иодко 3 или 4 года назад (то есть в 1894—1895 годах) демонстрировал в Вене поразившие зрителей опыты с катушкой Румкорфа и телефоном, соединёнными с землей и со своими антеннами[18]:99. Такие опыты он показывал в разных городах в 1891, 1892, 1896 и 1902 годах. Однако возможно, что эффект был основан на явлении электромагнитной индукции[16].
  4. Из доклада о работах Попова по беспроволочной телеграфии 1896—1897 годах: «В течение целого года я не возвращался к опытам на открытом воздухе и занимался различными испытаниями приборов в лаборатории. Осенью 1896 г. дошли из Англии газетные сведения, что Маркони под руководством Приса производит опыты сигнализации с помощью электромагнитных волн и достиг расстояния до ½ мили. (…) Но я лично был убежден, что в закрытых ящиках Маркони был помещён прибор, аналогичный с моим, и потому с марта этого года начал подготовлять приборы для опытов передачи сигналов с помощью электромагнитных волн на большие расстояния»[31]:89—90.
  5. В советской историографии с 1926 года сложилась легенда, что указанная телеграфная передача состоялась 12 марта 1896 года. Появление легенды, которая в течение последующих четырёх десятилетий воспроизводилась в технико-исторических ссылках многими авторами, связывают с именем сотрудника Палаты мер и весов B. C. Габеля[1]. С 1926 года считалось, что текст телеграммы был «Heinrich Hertz», а с 1945 года — «Генрих Герц»[2][6]:139—140. Легенда была официально опровергнута в процессе работы Исторической комиссии НТОРЭС в 1967 году[1].
  6. Попов в это время был в командировке. Он посетил Англию, Францию, Германию и Швейцарию для ознакомления с постановкой электротехнического образования и производством аппаратуры беспроволочного телеграфирования. Во Франции посетил фирму Дюкрете и ознакомился с ходом работ по заказу Морского ведомства на поставку станций беспроводной связи для российского флота[17]:33, 46.
  7. Проявлялся детекторный эффект когерера как полупроводника.
  8. Термин «радиовещание» был введён в обращение И. Г. Фрейманом вместо термина «широковещание» — буквального перевода с английского[42].
  9. Изобретателем системы передачи сигналов методом ЧМ считается Корнелиус Д. Эрет (США, 1902 год)[54].
Источники
  1. Чистяков Н. И. Ошибки в изложении истории радио нужно исправить: по поводу Письма в редакцию «К вопросу о летописцах радио» // Электросвязь. — 1994. — № 4. — С. 31—32.
  2. Никольский Л. Н. Кто «изобрёл» радио? (недоступная ссылка). Дата обращения: 24 августа 2015. Архивировано 22 января 2008 года.
  3. Меркулов В. Какое радио изобретал Маркони // Радио. — 2007. — № 6, 7.
  4. Берг, 1945
  5. 187. Заметка В. С. Габеля с сообщением писем В. К. Лебединского, О. Д. Хвольсона и В. В. Скобельцына, касающихся демонстрации А. С. Поповым передачи сигналов (12—24 марта 1896 года). Декабрь 1925. Берг, 1945, с. 270—272
  6. Шапкин В. И. Радио: открытие и изобретение. — Москва : ДМК ПРЕСС, 2005. — 190 с. — ISBN 5-9706-0002-4.
  7. Александр Малащенко. История создания и развития реле
  8. «Первые устройства беспроводной связи». Виртуальный компьютерный музей
  9. Крыжановский Л. Н. История изобретения и исследований когерера
  10. Быховский М. А. Махлон Лумис. Отрывок из статьи в журнале «Электросвязь». Виртуальный компьютерный музей
  11. Рыбак Дж. П., Крыжановский Л. Н. Дэвид Эдвард Юз и открытие радиоволн. В журнале «Электросвязь» № 9, 1994. Виртуальный компьютерный музей
  12. Самохин В. П., Тихомирова Е. А. На заре радиосвязи // Наука и образование: электронное научно-техническое издание, 2017, вып. 6.
  13. Меркулов В. 120 лет весьма быстрых колебаний. Виртуальный компьютерный музей.. www.computer-museum.ru. Дата обращения: 8 мая 2017.
  14. Экспериментальные работы Генриха Герца. Виртуальный компьютерный музей
  15. Работы Оливера Лоджа. Виртуальный компьютерный музей
  16. ЦНБ НАН Беларуси :: История белорусской в лицах. csl.bas-net.by. Дата обращения: 3 марта 2020.
  17. А. С. Попов — Э. Дюкрете. Письма и документы. 1898—1905 гг. / Под ред. Л. И. Золотинкиной. — СПб: Русская классика, 2009. — 340 с.
  18. 53. Из журнала заседания Французского физического общества в Париже в связи с изобретениями А. С. Попова и Г. Маркони. 7 января 1898. Берг, 1945, с. 98—99
  19. Меркулов В. Когда радио «заговорило» // Радио, 2007. — № 10. — С. 6—9.
  20. Работы Уильяма Крукса. Виртуальный компьютерный музей
  21. Пестриков В. От электрической дуги Петрова — к радиопередаче речи // IT news. — 2008. — № 10—12.
  22. Howard B. Rockman, Intellectual Property Law for Engineers and Scientists, page 196'
  23. Волшебник электричества :: CQHAM.RU. news.cqham.ru. Дата обращения: 17 августа 2016.
  24. Меркулов В. От передатчика А. Риги — до экспериментов по дальнему приёму телеграфных сигналов // Радио. — 2009. — № 8.
  25. Howard B. Rockman, Intellectual Property Law for Engineers and Scientists, page 197'
  26. IEEE Global History Network. Jagadish Chandra Bose. IEEE History Center. Дата обращения: 21 июня 2011.
  27. Меркулов В. Какое радио изобретал Маркони. Статья в журнале «Радио». Виртуальный компьютерный музей
  28. Меркулов В. Когда и кем было изобретено радио // Радио. — 2007.
  29. 33. Доклад У. Г. Приса в Королевском институте «Передача сигналов на расстояние без проводов». 4 июня 1897 г. Берг, 1966, с. 84—97
  30. U.S. Supreme Court. Дата обращения: 23 апреля 2012.
  31. 46. Доклад А. С. Попова о телеграфировании без проводов в Электротехническом институте. 19 октября 1897. Берг, 1945, с. 83—93
  32. Аппаратура из комплекта искровой станции беспроволочного телеграфа производства фирмы Дюкрете 1904 г.. nauchebe.net. Дата обращения: 19 января 2020.
  33. 48. Сообщение в газете «Петербургский листок» о передаче А. С. Поповым по радио слова «Герц». 18 декабря 1897 г. Берг, 1966, с. 145—146
  34. 50. Сообщение в газете «Котлин» о прочитанной А. С. Поповым лекции высшему начальствующему составу флота «О телеграфировании без проводников». 23 декабря 1897 г. Берг, 1966, с. 147
  35. Пестриков В. Привилегия № 6066 на приёмник депеш // IT news. — 2006. — № 6, 7.
  36. Г. А. Богуславский. А. С. Попов и адмирал С. О. Макаров
  37. Глущенко А. А. Место и роль радиосвязи в модернизации России (1900-1917 гг.). СПб.: ВМИРЭ, 2005. — 709 с. — ISBN 5-7997-0364-2.
  38. Radio's First Message -- Fessenden and Marconi. www.ieee.ca. Дата обращения: 11 января 2019.
  39. Freelance Group. Загадка Маркони. www.radioradar.net. Дата обращения: 8 октября 2017.
  40. Матонин Евгений. Уорденклиф. Башня - Никола Тесла. www.e-reading.mobi. Дата обращения: 9 октября 2017.
  41. Самохин В. П. Памяти Реджинальда Фессендена (с приложением «Александерсон Эрнест») // Наука и образование, научное издание МГУ им. Баумана, 8 августа 2012 года.
  42. Стр. 78 журнала «Радио» № 6 за 1990 год. archive.radio.ru. Дата обращения: 7 мая 2020.
  43. Пестриков В. Электровакуумный триод, или Разные пути решения одной проблемы // IT news. — 2006. — № 20, 22.
  44. Самохин В. П., Киндяков Б. М. Памяти Эдвина Армстронга (18.12.1890—31.01.1954) // Наука и образование. — 2014. (недоступная ссылка). Дата обращения: 30 сентября 2017. Архивировано 7 апреля 2014 года.
  45. Быховский М.А. 4.1 Аналоговые методы модуляции // Круги памяти (Очерки истории развития радиосвязи и вещания в XX столетии). М., 2001. — С. 28. — 224 с. — ISBN 5-93533-011-3.
  46. Быховский М. А. Вещание. Статья из книги «Круги памяти».
  47. Члиянц Г. Из истории первой ламповой радиостанции.. www.computer-museum.ru. Дата обращения: 2 октября 2017.
  48. Совет Народных Комиссаров СССР. Постановление от 28 июля 1924 года. О частных приемных радиостанциях
  49. Совет Народных Комиссаров СССР. Постановление от 5 февраля 1926 года. О радиостанциях частного пользования
  50. The WCFL Chicago Radio Timeline Page (англ.) (недоступная ссылка). Chcago's Voice of labour. WCFL. Дата обращения: 21 ноября 2012. Архивировано 18 октября 2012 года.
  51. Peter Yanczer. Ulises Armand Sanabria (англ.). Mechanical Television. Early Television Museum. Дата обращения: 21 ноября 2012. Архивировано 24 ноября 2012 года.
  52. MKKP - всем юбилеям юбилей. www.broadcasting.ru. Дата обращения: 17 ноября 2017.
  53. История тележурналистики в России
  54. Быховский М. А. Развитие методов модуляции и кодирования. Статья из книги «Круги памяти».
  55. Миркин В. В. К истории советской радиосвязи и радиовещания в 1945—1965 гг. // Вестник Томского государственного университета. История. — 2013. — № 1 (21). — С. 202.
  56. Amrad Ltd. Вестник старого радио - История радио и телевидения (недоступная ссылка). oldradioclub.ru. Дата обращения: 20 октября 2017. Архивировано 11 августа 2018 года.
  57. Во всем мире — 100 миллионов телевизоров // Радио. — 1962. — № 6. — С. 52.
  58. News Digest. // Aviation Week & Space Technology, January 21, 1963, v. 78, no. 3, p. 39.

Литература

  • Быховский М. А. Круги памяти. Очерки истории развития радиосвязи и вещания в XX столетии. Из серии «История электросвязи и радиотехники», выпуск 1. — М.: Мобильные коммуникации, 2001. — 224 с. ISBN 5-93533-011-3.
  • Изобретение радио А. С. Поповым. Сборник документов и материалов. Вып. 2 / Под ред. А. И. Берга. М.Л.: Издательство АН СССР, 1945. — 309 с.
  • Изобретение радио. А. С. Попов. Документы и материалы / Составители: Е. А. Попова-Кьяндская, В. М. Родионов, М. И. Мосин, В. И. Шамшур. Под ред. А. И. Берга. М.: Наука, 1966. — 284 с.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.