Электрическая дуга
Электри́ческая дуга́ (во́льтова дуга́, дугово́й разря́д) — один из видов электрического разряда в газе.
Впервые описана в 1801 году британским ученым сэром Гемфри Дэви в «Журнале натурфилософии, химии и искусств» (Journal of Natural Philosophy, Chemistry, and the Arts) и продемонстрирована им на заседании Королевского научного общества, а в 1802 году — русским учёным В. Петровым в книге с характерным названием «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (Санкт-Петербург, 1803). Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.
Физические явления
Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:
При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).
Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь. Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.
После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.
Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
Строение дуги
Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области — около 0,0001 мм.
Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги — от 7 000 до 18 000°С, в области катода — 9000 — 12000°С.
Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине[1].
Сварочные дуги классифицируют по:
- Материалам электрода — с плавящимся и неплавящимся электродом;
- Степени сжатия столба — свободную и сжатую дугу;
- По используемому току — дуга постоянного и дуга переменного тока;
- По полярности постоянного электрического тока — прямой полярности («-» на электроде, «+» — на изделии) и обратной полярности;
- При использовании переменного тока — дуги однофазная и трехфазная.
Саморегулирование дуги
При возникновении внешнего возмущения — изменения напряжения на дуге, скорости подачи электрода и др. — возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги увеличивается её сопротивление и уменьшается сварочный ток. Это приводит к уменьшению выделяемого тепла и уменьшению скорости плавления электрода. При этом, скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги[2].
На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.
Применение
Электрическая дуга, как мощный и концентрированный источник тепла, используется при электродуговой сварке и плазменной резке металлов, для выплавки стали в дуговых печах, инициировании взрывчатого вещества в электродетонаторах. Также дуга может быть использована для нагрева рабочего тела в электроракетных двигателях.
Совместное действие нагрева от дуги и ударных волн, возникающих при схлопывании дугового канала, используется при электроэрозионной обработки. Объёмные пульсациии плазменного канала высокочастотной дуги используется для звуковоспроизведения в ионофонах.
Яркое излучение дуги используется для освещения. Дуговыми были первые серийные источники электрического света — свечи Яблочкова. Определённое распространение получили мощные источники света на основе электрической дуги — дуговые электролампы. В зависимости от состава среды в которой горит дуга такие лампы могут быть как прямого излучения (ксеноновая дуговая лампа, угольная дуговая лампа, натриевая газоразрядная лампа), так и косвенного, с помощью люминофоров — ртутная газоразрядная лампа.
Влияние на состав плазмы дугу материала электродов используют в вакуумно-дуговом нанесении покрытий и в спектроскопии, например, в стилоскопах, для получения спектра излучения исследуемого образца.
Особенности физики зажигания дуги (необходимость катодного пятна) используют в ртутных выпрямителях.
Иногда используется свойство нелинейной вольт-амперной характеристики дуги (см. автомат гашения поля, разрядники).
Борьба с электрической дугой
В ряде устройств явление электрической дуги является вредным. Это, в первую очередь, контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели, автоматические выключатели, контакторы, секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами, между размыкающимися контактами возникает дуга.
Механизм возникновения дуги в данном случае следующий:
- Уменьшение контактного давления — количество контактных точек уменьшается, растёт сопротивление в контактном узле;
- Начало расхождения контактов — образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
- Разрыв и испарение «мостиков» из расплавленного металла;
- Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
- Устойчивое горение дуги с быстрым выгоранием контактов.
Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги, теплота выделяющаяся в ней будет равномерно распределяться по телу контакта).
Для выполнения вышеуказанных требований применяются следующие методы борьбы с дугой:
- охлаждение дуги потоком охлаждающей среды — жидкости (масляный выключатель); газа — (воздушный выключатель, автогазовый выключатель, масляный выключатель, элегазовый выключатель), причём поток охлаждающей среды может проходить как вдоль ствола дуги (продольное гашение), так и поперёк (поперечное гашение); иногда применяется продольно-поперечное гашение;
- использование дугогасящей способности вакуума — известно, что при уменьшении давления газов, окружающих коммутируемые контакты до определённого значения, приводит к эффективному гашению дуги (в связи с отсутствием носителей для образования дуги) вакуумный выключатель.
- использование более дугостойкого материала контактов;
- применение материала контактов с более высоким потенциалом ионизации;
- применение дугогасительных решёток (автоматический выключатель, электромагнитный выключатель). Принцип применения дугогашения на решётках основан на применении эффекта околокатодного падения в дуге (большая часть падения напряжения в дуге — это падение напряжения на катоде; дугогасительная решётка — фактически ряд последовательных контактов для попавшей туда дуги).
- использование дугогасительных камер — попадая в камеру из дугостойкого материала, например слюдопласта, с узкими, иногда зигзагообразными каналами, дуга растягивается, сжимается и интенсивно охлаждается от соприкосновения со стенками камеры.
- использование «магнитного дутья» — поскольку дуга сильно ионизирована, то её в первом приближении можно полагать как гибкий проводник с током; создавая специальными электромагнитами (включённых последовательно с дугой) магнитное поле можно создавать движение дуги для равномерного распределения тепла по контакту, так и для загона её в дугогасительную камеру или решётку. В некоторых конструкциях выключателей создаётся радиальное магнитное поле, придающее дуге вращательный момент.
- шунтирование контактов в момент размыкания силовым полупроводниковым ключом тиристором или симистором, включеным параллельно контактам, после размыкания контактов полупроводниковый ключ отключается в момент перехода напряжения через ноль (гибридный контактор, тирикон).
Воздействие на организм человека
Электрическая дуга создает сильное излучение в широком диапазоне волн. При горении в воздухе около 70 % энергии излучения приходится на ультрафиолет, 15 % — на видимое излучение и 15 % — на инфракрасное[3]. Воздействие на глаза может привести к электроофтальмии, а на кожу — к ожогам. Для защиты глаз и лица сварщики используют специальные сварочные маски с тёмным светофильтром. Для защиты тела — термостойкую спецодежду.
Учитывая то, что дуговой разряд по сути является открытым проводником, то прямое воздействие дуги на человека приведет к электротравме.
Примечания
- Электрогазосварщик
- Скорость — плавление — проволока
- Излучение сварочной дуги
Литература
- Дуга электрическая — статья из Большой советской энциклопедии.
- Искровой разряд — статья из Большой советской энциклопедии.
- Райзер Ю. П. Физика газового разряда. — 2-е изд. — М.: Наука, 1992. — 536 с. — ISBN 5-02014615-3.
- Родштейн Л. А. Электрические аппараты. — Л., 1981.
- Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François (2015-06-01). «Laser-assisted guiding of electric discharges around objects». Science Advances 1 (5): e1400111. Bibcode:2015SciA….1E0111C. doi:10.1126/sciadv.1400111. ISSN 2375—2548.