Функция Гамильтона

Эта статья включает описание термина «полная энергия»

Функция Га́мильтона, или гамильтониа́н — функция, зависящая от обобщённых координат, импульсов и, возможно, времени, описывающая динамику механической системы в гамильтоновой формулировке классической механики.

или

где  — полный набор обобщенных импульсов, описывающий данную систему ( — число степеней свободы),
 — полный набор обобщенных координат.

В квантовой механике и квантовой теории поля гамильтониан, или оператор Гамильтона, определяющий временну́ю эволюцию системы, соответствует функции Гамильтона в классической физике и является её обобщением, в принципе достаточно прямым, однако в ряде случаев не совсем тривиальным (в принципе квантовый гамильтониан может быть получен просто подстановкой квантовых операторов координат и импульсов в функцию Гамильтона, однако из-за того, что такие операторы не всегда коммутируют, может быть не сразу очевиден выбор правильного варианта из возникающих вследствие этого).

В формализме фейнмановского интеграла по траекториям в квантовой механике и квантовой теории поля используется и просто классическая функция Гамильтона.

Функция Гамильтона участвует в гамильтоновой форме принципа наименьшего (стационарного) действия, канонических уравнениях Гамильтона (одной из возможных форм уравнения движения в классической механике) и уравнении Гамильтона — Якоби, являясь основой гамильтоновой формулировки механики.

Для консервативных систем функция Гамильтона представляет полную энергию (выраженную как функция координат и импульсов), то есть — в классическом смысле — сумму кинетической и потенциальной энергий системы.

Функция Гамильтона связана с лагранжианом через преобразование Лежандра следующим соотношением:

где  — обобщённый импульс частицы, а  — её обобщённая скорость.

Физический смысл

Функция Гамильтона по сути представляет собой локальный закон дисперсии, выражающий квантовую частоту (частоту колебаний волновой функции) через волновой вектор для каждой точки пространства[1]:

Так, в классическом приближении (при больших частотах и модуле волнового вектора и сравнительно медленной зависимости от ) этот закон достаточно очевидно описывает движение волнового пакета через канонические уравнения Гамильтона, одни из которых интерпретируются как формула групповой скорости, полученная из закона дисперсии, а другие вполне естественно — как изменение, в частности поворот, волнового вектора при распространении волны в неоднородной среде определённого типа.

Примечания

  1. Поскольку энергия и импульс и есть частота и волновой вектор, отличаясь от них лишь универсальным постоянным множителем, который может быть выбран и единичным в подходящей системе единиц.

Литература

  • Ландау Л. Д., Лифшиц Е. М. Механика, том 1. (Под ред. Л. П. Питаевского) . 4-е изд.— 2007.— 224 с., 2 000 экз., ISBN 978-5-9221-0819-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.