Динамика (физика)

Дина́мика (греч. δύναμις «сила, мощь») — раздел механики, в котором изучаются причины изменения механического движения, тогда как способы описать движение изучает кинематика. В классической механике этими причинами являются силы. Динамика оперирует также такими понятиями, как масса, импульс, момент импульса, энергия[1].

Также динамикой нередко называют, применительно к другим областям физики (например, к теории поля), ту часть рассматриваемой теории, которая более или менее прямо аналогична динамике в механике, противопоставляясь обычно кинематике (к кинематике в таких теориях обычно относят, например, соотношения, получающиеся из преобразований величин при смене системы отсчёта).

Иногда слово динамика применяется в физике и не в описанном смысле, а в более общелитературном: для обозначения просто процессов, развивающихся во времени, зависимости от времени каких-то величин, не обязательно имея в виду конкретный механизм или причину этой зависимости.

Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (см. квантовая механика) и при движениях со скоростями, близкими к скорости света (см. релятивистская механика). Такие движения подчиняются другим законам.

С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.

В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.

Эрнст Мах считал, что основы динамики были заложены Галилеем[2].

Основная задача динамики

Исторически деление на прямую и обратную задачу динамики сложилось следующим образом[3].

Законы Ньютона

Классическая динамика основана на трёх основных законах Ньютона:

  • 1-й: Существуют такие системы отсчёта, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.

где ускорение тела, силы, приложенные к материальной точке, а — её масса, или

В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами[4][5].

Второй закона Ньютона можно также сформулировать с использованием понятия импульса:

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на него силе[6].

где — импульс (количество движения) точки, — её скорость, а время. При такой формулировке, как и ранее, полагают, что масса материальной точки неизменна во времени[7][8][9].

  • 3-й: Силы, с которыми тела действуют друг на друга, лежат на одной прямой, имеют противоположные направления и равные модули

Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса

Законы Ньютона в неинерциальных системах отсчёта

Существование инерциальных систем отсчёта лишь постулируется первым законом Ньютона. Реальные системы отсчёта, связанные, например, с Землёй или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчёта, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса. Эти «силы» не обусловлены взаимодействием тел, то есть по своей природе не являются силами и вводятся лишь для сохранения формы второго закона Ньютона:

,

где  — сумма всех фиктивных сил, возникающих в неинерциальной системе отсчёта.

Описание динамики исходя из принципа наименьшего действия

Многие законы динамики могут быть описаны исходя не из законов Исаака Ньютона, а из принципа наименьшего действия.

Формулы некоторых сил, действующих на тело

  • Сила всемирного тяготения:

или в векторной форме:

вблизи земной поверхности:

  • Сила трения:
  • Сила Архимеда:

Деление динамики по типам объекта исследования

  • Динамика точки изучает взаимодействие материальных точек — тел, размерами которых можно пренебречь по сравнению с характерными размерами изучаемого явления. Поэтому в динамике точки силы, действующие на все точки тела считаются равными.
  • Динамика твёрдого тела изучает взаимодействие абсолютно твёрдых тел (тел, расстояние между двумя любыми точками которого не может изменяться). Так как любое тело ненулевого объёма имеет бесконечное число точек, и соответственно бесконечное число фиксированных связей между ними, тело имеет 6 степеней свободы, что накладывает ограничение на способы его взаимодействия.

Изучением же условий равновесия механических систем занимается статика.

Динамика деформируемых тел:

Наиболее же общие свойства макроскопических систем изучает термодинамика, достижения которой учитываются в механике.

Примечания

  1. Тарг С. М. Динамика // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1988.  Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 616-617. — 707 с. 100 000 экз.
  2. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: Ижевская республиканская типография, 2000. — С. 105. — 456 с. — ISBN 5-89806-023-5.
  3. Тарг С. М. Краткий курс теоретической механики. М.: Высшая школа, 1995. — С. 183. — 416 с. — ISBN 5-06-003117-9.
  4. Маркеев А. П. Теоретическая механика. М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
  5. Тарг С. М. Краткий курс теоретической механики. М.: Высшая школа, 1995. — С. 287. — 416 с. — ISBN 5-06-003117-9. «В классической механике масса каждой точки или частицы системы считается при движении величиной постоянной»
  6. Сивухин Д. В. Общий курс физики. М.: Физматлит; изд-во МФТИ, 2005. — Т. I. Механика. — С. 76. — 560 с. — ISBN 5-9221-0225-7.
  7. Маркеев А. П. Теоретическая механика. М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
  8. Иродов И. Е. Основные законы механики. М.: Высшая школа, 1985. — С. 41. — 248 с.«В ньютоновской механике… m=const и dp/dt=ma».
  9. Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. Архивированная копия (недоступная ссылка). Дата обращения: 11 февраля 2013. Архивировано 17 июня 2013 года. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».

Литература

  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997.
  • Матвеев А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие. М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.